首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
The cellular homologs of the ets gene from the avian erythroblastosis retrovirus E26 have been studied in chickens, humans, mice, and cats. In this report a further evolutionary step is taken by isolating and characterizing a Drosophila ets-related genomic clone. Sequence analysis of this clone has shown it to contain the 3' end of the v-ets gene, called ets-2, corresponding to the last two exons of chicken ets. The predicted amino acid sequence was found to have over 90% homology when compared to that of v-ets. This is the highest level of conservation observed for any previously characterized Drosophila oncogene homolog. Expression of the ets-2 gene occurs throughout development, but is highest during the embryonic and pupal stages. By in situ hybridization, the ets-2 chromosomal position was determined to be 58A/B which corresponds to no known phenotypic mutant. As this is a highly conserved gene, the Drosophila model system should prove useful for the determination of the ets gene function.  相似文献   

4.
Chick vigilin cRNA clones were used to isolate the cognate human gene, by screening a pWE15 genomic library. Three independent cosmid clones were isolated and characterized by restriction mapping. The gene was identified by sequencing an internal EcoRI fragment containing two exons homologous to exon 24 and 25 of the chicken vigilin gene and corresponding to nucleotides 1973–2104 of the human HBP-cDNA. The homology between the chicken and human sequences was 77% and 82% at the cDNA level, and 91% and 100% at the amino acid level. In addition, the analyzed intron/exon boundaries were invariantly conserved. The 5 and 3 regions of the human gene were mapped by Southern analysis of the respective clones with synthetic oligonucleotides. The entire vigilin gene spans a region of about 50 kb and has been assigned to chromosome 2q36–q37.2 (FL-pter value of 0.96 ± 0.03) by fluorescence in situ hybridization to metaphase spreads from normal peripheral blood lymphocytes. The vigilin gene is localized in a chromosomal region comprising a cluster of collagen genes (COLIVA3, COLVIA3) and the locus of the Waardenburg syndrome I. Only one mRNA species of 4.4 kb is transcribed from the human vigilin gene. In accordance with previous observations on chicken mRNA, the expression of the human vigilin mRNA depends on the stage of cytodifferentiation both in vitro and in situ.  相似文献   

5.
Characterization of the human glucagon-receptor-encoding gene (GGR) should provide a greater understanding of blood glucose regulation and may reveal a genetic basis for the pathogenesis of diabetes. A cDNA encoding a complete functional human glucagon receptor (GGR) was isolated from a liver cDNA library by a combination of polymerase chain reaction and colony hybridization. The cDNA encodes a receptor protein with 80% identity to rat GGR that binds [125I] glucagon and transduces a signal leading to increases in the concentration of intracellular cyclic adenosine 3′,5′-monophosphate. Southern blot analysis of human DNA reveals a hybridization pattern consistent with a single GGR locus. In situ hybridization to metaphase chromosome preparations maps the GGR locus to chromosome 17q25. Analysis of the genomic sequence shows that the coding region spans over 5.5 kb and is interrupted by 12 introns.  相似文献   

6.
cDNA clones encoding the murine int-1-related protein (m-irp) were isolated from an 8.5-day mouse embryo library. m-irp and its human counterpart, h-irp, share extensive nucleotide homology in coding (92%) and 3' untranslated (69%) regions. At the amino acid level, m-irp and h-irp share 97% of amino acids including all 24 cysteine residues, which are highly conserved among members of the int-1 family. However, in contrast to h-irp and int-1, the predicted m-irp protein sequence did not contain a signal peptide sequence. Analysis of polymerase chain reaction, amplified cDNA, and genomic sequences strongly suggests that a single-base substitution has created a new 5' splice site 17 bp 5' of a highly conserved splice site. Splicing at this new site generates a mRNA-encoding an amino-terminal truncated protein. Splicing at the conserved splice site generates a mRNA species encoding a protein with a signal peptide sequence similar to h-irp. Close linkage between m-irp and the met oncogene maps m-irp sequences to proximal mouse chromosome 6. Adult and fetal expression of m-irp was examined by RNA blot analysis. Adult expression of m-irp is restricted to lungs and heart, and fetal expression, to placental tissue and to all stages of fetal development examined. In situ hybridization localized early fetal m-irp expression to the pericardium of the heart, to the umbilicus and associated allantoic mesoderm, and to the ventral lateral mesenchyme tissue surrounding the umbilical vein in the fetus. These results suggest a role for m-irp in the development of fetal allantoic communication.  相似文献   

7.
The plant cell walls comprise various enzymes and several kinds of structural proteins. In addition to the structural roles, the structural cell wall proteins also function in altering the physi-cal properties of cell walls as cells grow, divide and differentiate, and in repairing of cell walls after infection or wounding[1,2]. Plant structural cell wall proteins may be divided into four main classes: extensins, proline-rich proteins (PRPs), arabinogalactan proteins (AGPs) and glycine-rich p…  相似文献   

8.
9.
10.
In the homozygous condition, the mutation adr (arrested development of righting response) of the mouse causes a myotonia and a drastic reduction of the Ca2+-binding protein parvalbumin (PV) in fast muscles. Using a rat PV probe, a mouse cDNA clone was isolated from a lambda gt11 wild-type fast-muscle library and its nucleotide sequence was determined. The protein coding and the 3' nontranslated regions of the mouse gene show extensive homology with the rat PV gene. The result of Southern blot hybridization is consistent with a single copy gene for parvalbumin. Restriction fragment length polymorphisms (RFLPs) between Mus musculus domesticus (e.g. C57BL/6) and Mus spretus (SPE) were detected with the enzymes Eco RI, Pst I, and Sst I. The restriction fragment patterns of DNA samples from 65 individual offspring of (C57BL/6 x SPE)F1 x C57BL/6 backcrosses were tested with the PV probe and matched, for linkage detection, to pre-existing patterns established with various RFLP probes on the same samples. A co-distribution of PV-RFLPs with Pvt-1 and Mlvi-2, which had been localized on chromosome 15, was detected. Thus, the structural gene for PV, designated Pva, maps to chromosome 15 of the mouse whereas the adr mutation shows no linkage with markers on this chromosome. Gene locus homology between chromosome 15 of the mouse and chromosome 22 of man (which carries the human PV gene) is discussed.  相似文献   

11.
12.
13.
14.
Hjalt TA  Murray JC 《Genomics》1999,62(3):456-459
The BARX genes 1 and 2 are Bar class homeobox genes expressed in craniofacial structures during development. In this report, we present the genomic structure, chromosomal localization, and polymorphic markers in BARX2. The gene has four exons, ranging in size from 85 to 1099 bp. BARX2 is localized on human chromosome 11q25, as determined by radiation hybrid mapping. In the mouse, Barx2 is coexpressed with Pitx2 in several tissues. Based on the coexpression, BARX2 was assumed to be a candidate gene for those cases of Rieger syndrome that cannot be associated with mutations of PITX2. Mutations in PITX2 cause some cases of Rieger syndrome, an autosomal dominant disorder affecting eyes, teeth, and umbilicus. DNA from Rieger patients was subjected to single-strand conformation polymorphism screening of the BARX2 coding region. Three single nucleotide polymorphisms were found in a normal population, although no etiologic mutations were detectable in over 100 cases of Rieger syndrome or in individuals with related ocular disorders.  相似文献   

15.
16.
The human motilin gene has been isolated and characterized. The gene spans about 9 kilobase pairs (kb) and the 0.7 kb motilin mRNA is encoded by five exons. The 22-amino-acid motilin sequence is encoded by exons 2 and 3. The human motilin gene was mapped to the p21.2----p21.3 region of chromosome 6 by hybridization of the cloned cDNA to DNAs from a panel of reduced human-mouse somatic cell hybrids and by in situ hybridization to human prometaphase chromosomes. RNA blotting using RNA prepared from various regions of the human gastrointestinal tract revealed high levels of motilin mRNA in duodenum and lower levels in the antrum of the stomach; motilin mRNA could not be detected by this procedure in the esophagus, cardia of the stomach, descending colon or gallbladder.  相似文献   

17.
18.
Bassoon is a novel 420-kDa protein recently identified as a component of the cytoskeleton at presynaptic neurotransmitter release sites. Analysis of the rat and mouse sequences revealed a polyglutamine stretch in the C-terminal part of the protein. Since it is known for some proteins that abnormal amplification of such polyglutamine regions can cause late-onset neurodegeneration, we cloned and localized the human BASSOON gene (BSN). Phage clones spanning most of the open reading frame and the 3' untranslated region were isolated from a human genomic library and used for chromosomal localization of BSN to chromosome 3p21 by FISH. The localization was confirmed by PCR on rodent/human somatic cell hybrids; it is consistent with the localization of the murine Bsn gene at chromosome 9F. Sequencing revealed a polyglutamine stretch of only five residues in human, and PCR amplifications from 50 individuals showed no obvious length polymorphism in this region. Analysis of the primary structure of Bassoon and comparison to previous database entries provide evidence for a newly emerging protein family.  相似文献   

19.
Indolethylamine N-methyltransferase (INMT) catalyzes the N-methylation of tryptamine and structurally related compounds. We recently cloned and characterized the rabbit INMT cDNA and gene as a step toward cloning the cDNA and gene for this enzyme in humans. We have now used a PCR-based approach to clone a human INMT cDNA that had a 792-bp open reading frame that encoded a 263-amino-acid protein 88% identical in sequence to rabbit INMT. Northern blot analysis of 35 tissues showed that a 2.7-kb INMT mRNA species was expressed in most tissues. When the cDNA was expressed in COS-1 cells, the recombinant enzyme catalyzed the methylation of tryptamine with an apparent K(m) value of 2.9 mM. The human cDNA was then used to clone the human INMT gene from a human genomic BAC library. The gene was 5471 bp in length, consisted of three exons, and was structurally similar to the rabbit INMT gene as well as genes for nicotinamide N-methyltransferase and phenylethanolamine N-methyltransferase in several species. All INMT exon-intron splice junctions conformed to the "GT-AG" rule, and no canonical TATA or CAAT sequences were present within the 5'-flanking region of the gene. Human INMT mapped to chromosome 7p15.2-p15.3 on the basis of both PCR analysis and fluorescence in situ hybridization. Finally, two possible single nucleotide polymorphisms were identified within exon 3, both of which altered the encoded amino acid. The cloning and expression of a human INMT cDNA, as well as the cloning, structural characterization, and mapping of its gene represent steps toward future studies of the function and regulation of this methyltransferase enzyme in humans.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号