首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
5.
6.
7.
A 4.4-kb DNA fragment was cloned from Actinobacillus pleuropneumoniae (strain 4074, serotype 1) by genetic complementation with Escherichia coli groES-groEL mutant strains. Sequence analysis of this fragment revealed a purine nucleoside phosphorylase (DeoD)-encoding gene homolog (deoD), heat-shock response-encoding genes for the small (groES) and large subunits (groEL) and a partial open reading frame encoding an alcohol dehydrogenase homolog (adhE). The predicted amino-acid sequence of groES and groEL genes showed extensive sequence identity (80–95%) with other Pasteurellaceae. The gene organization surrounding the groE locus was different from that of Haemophilus infuenzae. When expressed in E. coli, groES-groEL genes were capable of complementing the growth of a λ lytic phage, indicating a structural as well as functional conservation.  相似文献   

8.
9.
10.
11.
12.
13.
14.
Summary A hybrid phage (Sda1), containing an 8.1 kb EcoRI DNA fragment from the Escherichia coli chromosome, was selected on the basis of its ability to suppress bacterial thermosensitivity caused by the dnaA46 mutation. We have shown that this suppression is due to a recA +-dependent amplification of the 8.1 kb fragment; consistent with this observation, cloning of the 8.1 kb fragment into a high copy number plasmid (pBR325) leads also to suppression of dnaA46. In the suppressed strains growing at high temperature, bidirectional replication starts in or near the oriC region and requires the presence of the DnaA polypeptide. These findings suggest that the overproduction of a gene product(s), encoded by the cloned 8.1 kb fragment, can restore dnaA-dependent initiation of replication at high temperature in the oriC region. Genetic mapping shows that the groES (mopB) and groEL (mopA) genes are located on the 8.1 kb suppressor fragment. Further analysis, including in vitro mutagenesis and subcloning, demonstrates that the amplification of the groES and groEL genes is both necessary and sufficient to suppress the temperature sensitive phenotype of the dnaA46 mutation.  相似文献   

15.
16.
17.
18.
19.
FliZ, a global regulatory protein under the control of the flagellar master regulator FlhDC, was shown to antagonize σ(S)-dependent gene expression in Escherichia coli. Thereby it plays a pivotal role in the decision between alternative life-styles, i.e. FlhDC-controlled flagellum-based motility or σ(S)-dependent curli fimbriae-mediated adhesion and biofilm formation. Here, we show that FliZ is an abundant DNA-binding protein that inhibits gene expression mediated by σ(S) by recognizing operator sequences that resemble the -10 region of σ(S)-dependent promoters. FliZ does so with a structural element that is similar to region 3.0 of σ(S). Within this element, R108 in FliZ corresponds to K173 in σ(S), which contacts a conserved cytosine at the -13 promoter position that is specific for σ(S)-dependent promoters. R108 as well as C(-13) are also crucial for DNA binding by FliZ. However, while a number of FliZ binding sites correspond to known σ(S)-dependent promoters, promoter activity is not a prerequisite for FliZ binding and repressor function. Thus, we demonstrate that FliZ also feedback-controls flagellar gene expression by binding to a site in the flhDC control region that shows similarity only to a -10 element of a σ(S)-dependent promoter, but does not function as a promoter.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号