首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The distribution, characterization and function of the tcpA gene was investigated in Vibrio cholerae O1 strains of the El Tor biotype and in a newly emergent non-O1 strain classified as serogroup O139. The V. cholerae tcpA gene from the classical biotype strain O395 was used as a probe to identify a clone carrying the tcpA gene from the El Tor biotype strain E7946. The sequence of the E7946 tcpA gene revealed that the mature El Tor TcpA pilin has the same number of residues as, and is 82% identical to, TcpA of classical biotype strain O395. The majority of differences in primary structure are either conservative or clustered in a manner such that compensatory changes retain regional amino acid size, polarity and charge. In a functional analysis, the cloned gene was used to construct an El Tor mutant strain containing an insertion in tcpA. This strain exhibited a colonization defect in the infant mouse cholera model similar in magnitude to that previously described for classical biotype tcpA mutants, thus establishing an equivalent role for TCP in intestinal colonization by El Tor biotype strains. The tcpA analysis was further extended to both a prototype El Tor strain from the Peru epidemic and to the first non-O1 strain known to cause epidemic cholera, an O139 V. cholerae isolate from the current widespread Asian epidemic. These strains were shown to carry tcpA with a sequence identical to E7946. These results provide further evidence that the newly emergent non-O1 serogroup O139 strain represents a derivative of an El Tor biotype strain and, despite its different LPS structure, shares common TCP-associated antigens. Therefore, there appear to be only two related sequences associated with TCP pilin required for colonization by all strains responsible for epidemic cholera, one primary sequence associated with classical strains and one for El Tor strains and the recent O139 derivative. A diagnostic correlation between the presence of tcpA and the V. cholerae to colonize and cause clinical is now extended to strains of both O1 and non-O1 serotypes.  相似文献   

2.
Biotype-specific tcpA genes in Vibrio cholerae   总被引:4,自引:0,他引:4  
Abstract The tcpA gene, encoding the structural subunit of the toxin-coregulated pilus, has been isolated from a variety of clinical isolates of Vibrio cholerae , and the nucleotide sequence determined. Strict biotype-specific conservation within both the coding and putative regulatory regions was observed, with important differences between the El Tor and classical biotypes. V. cholerae O139 Bengal strains appear to have El Tor-type tcpA genes. Environmental O1 and non-O1 isolates have sequences that bind an E1 Tor-specific tcpA DNA probe and that are weakly and variably amplified by tcpA -specific polymerase chain reaction primers, under conditions of reduced stringency. The data presented allow the selection of primer pairs to help distinguish between clinical and environmental isolates, and to distinguish El Tor (and Bengal) biotypes from classical biotypes from classical biotypes of V. cholerae . While the role of TcpA in cholera vaccine preparations remains unclear, the data strongly suggest that TcpA-containing vaccines directed at O1 strains need include only the two forms of TcpA, and that such vaccines directed at (O139) Bengal strains should include the TcpA of El Tor biotype.  相似文献   

3.
Vibrio cholerae expresses two primary virulence factors, cholera toxin (CT) and the toxin-coregulated pilus (TCP). CT causes profuse watery diarrhea, and TCP (composed of repeating copies of the major pilin TcpA) is required for intestinal colonization by V. cholerae. Antibodies to CT or TcpA can protect against cholera in animal models. We developed a TcpA holotoxin-like chimera (TcpA-A2-CTB) to elicit both anti-TcpA and anti-CTB antibodies and evaluated its immunogenicity and protective efficacy in the infant mouse model of cholera. Adult female CD-1 mice were immunized intraperitoneally three times with the TcpA-A2-CTB chimera and compared with similar groups immunized with a TcpA+CTB mixture, TcpA alone, TcpA with Salmonella typhimurium flagellin subunit FliC as adjuvant, or CTB alone. Blood and fecal samples were analyzed for antigen-specific IgG or IgA, respectively, using quantitative ELISA. Immunized females were mated; their reared offspring were challenged orogastrically with 10 or 20 LD50 of V. cholerae El Tor N16961; and vaccine efficacy was assessed by survival of the challenged pups at 48 hrs. All pups from dams immunized with the TcpA-A2-CTB chimera or the TcpA+CTB mixture survived at both challenge doses. In contrast, no pups from dams immunized with TcpA+FliC or CTB alone survived at the 20 LD50 challenge dose, although the anti-TcpA or anti-CTB antibody level elicited by these immunizations was comparable to the corresponding antibody level achieved by immunization with TcpA-A2-CTB or TcpA+CTB. Taken together, these findings comprise strong preliminary evidence for synergistic action between anti-TcpA and anti-CTB antibodies in protecting mice against cholera. Weight loss analysis showed that only immunization of dams with TcpA-A2-CTB chimera or TcpA+CTB mixture protected their pups against excess weight loss from severe diarrhea. These data support the concept of including both TcpA and CTB as immunogens in development of an effective multivalent subunit vaccine against V. cholerae.  相似文献   

4.
Pang B  Zheng X  Diao B  Cui Z  Zhou H  Gao S  Kan B 《PloS one》2011,6(8):e24267
Vibrio cholerae is commonly found in estuarine water systems. Toxigenic O1 and O139 V. cholerae strains have caused cholera epidemics and pandemics, whereas the nontoxigenic strains within these serogroups only occasionally lead to disease. To understand the differences in the genome and clonality between the toxigenic and nontoxigenic strains of V. cholerae serogroups O1 and O139, we employed a whole genome PCR scanning (WGPScanning) method, an rrn operon-mediated fragment rearrangement analysis and comparative genomic hybridization (CGH) to analyze the genome structure of different strains. WGPScanning in conjunction with CGH revealed that the genomic contents of the toxigenic strains were conservative, except for a few indels located mainly in mobile elements. Minor nucleotide variation in orthologous genes appeared to be the major difference between the toxigenic strains. rrn operon-mediated rearrangements were infrequent in El Tor toxigenic strains tested using I-CeuI digested pulsed-field gel electrophoresis (PFGE) analysis and PCR analysis based on flanking sequence of rrn operons. Using these methods, we found that the genomic structures of toxigenic El Tor and O139 strains were syntenic. The nontoxigenic strains exhibited more extensive sequence variations, but toxin coregulated pilus positive (TCP+) strains had a similar structure. TCP+ nontoxigenic strains could be subdivided into multiple lineages according to the TCP type, suggesting the existence of complex intermediates in the evolution of toxigenic strains. The data indicate that toxigenic O1 El Tor and O139 strains were derived from a single lineage of intermediates from complex clones in the environment. The nontoxigenic strains with non-El Tor type TCP may yet evolve into new epidemic clones after attaining toxigenic attributes.  相似文献   

5.
The toxin-co-regulated pilus (TCP), a type 4 pilus that is expressed by epidemic strains of Vibrio cholerae O1 and O139, is required for colonization of the human intestine. The TCP structure is assembled as a polymer of repeating subunits of TcpA pilin that form long fibres, which laterally associate into bundles. Previous passive immunization studies have suggested that the C-terminal region of TcpA is exposed on the surface of the pilus fibre and has a critical role in mediating the colonization functions of TCP. In the present study, we have used site-directed mutagenesis to delineate two domains within the C-terminal region that contribute to TCP structure and function. Alterations in the first domain, termed the structural domain, result in altered pilus stability or morphology. Alterations in the second domain, termed the interaction domain, affect colonization and/or infection by CTX-bacteriophage without affecting pilus morphology. In vitro and in vivo analyses of the tcpA mutants revealed that a major function of TCP is to mediate bacterial interaction through direct pilus-pilus contact required for microcolony formation and productive intestinal colonization. The importance of this function is supported by the finding that intragenic suppressor mutations that restore colonization ability to colonization-deficient mutants simultaneously restore pilus-mediated bacterial interactions. The alterations resulting from the suppressor mutations also provide insight into the molecular interactions between pilin subunits within and between pilus fibres.  相似文献   

6.
Vibrio cholerae is causative agent of life threatening diarrheal disease, cholera. The toxin co-regulated pilus (TCP) is a critical colonization factor of V. cholerae and it also serves as receptor for CTXФ. In this study, we describe nucleotide sequence of four novel alleles of tcpA gene from toxigenic and non-toxigenic V. cholerae isolated from environmental sources. The phylogenetic analysis of tcpA revealed that it is related to tcpA of newly emerged O1 strain and unrelated to tcpA of wild type (classical and El Tor strains). All strains showed variant tcpA and also harbored intact Vibrio Pathogenicity Island (VPI). The expression of all variant alleles was demonstrated by RT-PCR.  相似文献   

7.
The bacterium Vibrio cholerae, the etiological agent of cholera, is often found attached to plankton, a property that is thought to contribute to its environmental persistence in aquatic habitats. The V. cholerae O1 El Tor biotype and V. cholerae O139 strains produce a surface pilus termed the mannose-sensitive hemagglutinin (MSHA), whereas V. cholerae O1 classical biotype strains do not. Although V. cholerae O1 classical does not elaborate MSHA, the gene is present and expressed at a level comparable to that of the other strains. Since V. cholerae O1 El Tor and V. cholerae O139 have displaced V. cholerae O1 classical as the major epidemic strains over the last fifteen years, we investigated the potential role of MSHA in mediating adherence to plankton. We found that mutation of mshA in V. cholerae O1 El Tor significantly diminished, but did not eliminate, adherence to exoskeletons of the planktonic crustacean Daphnia pulex. The effect of the mutation was more pronounced for V. cholerae O139, essentially eliminating adherence. Adherence of the V. cholerae O1 classical mshA mutant was unaffected. The results suggest that MSHA is a factor contributing to the ability of V. cholerae to adhere to plankton. The results also showed that both biotypes of V. cholerae O1 utilize factors in addition to MSHA for zooplankton adherence. The expression of MSHA and these additional, yet to be defined, adherence factors differ in a serogroup- and biotype-specific manner.  相似文献   

8.
9.
《Gene》1996,170(1):9-16
A physical map has been constructed of the 5-kb XbaI fragment encoding the promoter proximal of region the tcp gene cluster encoding the toxin-coregulated pilus (TCP) of Vibrio cholerae. This fragment contains the major regulatory regions for TCP. Comparison of the nucleotide (nt) sequences from strains of the classical and E1 Tor biotypes demonstrates that the regions are essentially identical, with several notable exceptions. The intergenic regions, between tcpI and tcpP, and between tcpH and tcpA, show significant sequence divergence which may account for the biotype-related differences in TCP, since this is the location of the major promoter sequences. The C-terminal coding regions of the major pilin subunit, TcpA, also differ. Southern hybridization analyses suggest that the tcpA nt sequence is conserved within a biotype, and Western blot analysis suggests that the two forms of TcpA are antigenically different, but related. Besides tcpA, tcpB, tcpH and tcpI, the genes encoding two additional proteins, TcpP and TcpQ, but not previously defined, were also identified. TcpH and TcpI have been previously suggested to be regulatory proteins but homology data imply that TcpI is a methyl-accepting chemotaxis protein (MCP), as recently reported [Harkey et al., Infect. Immun. 62 (1994) 2669-2678], and TcpH is predicted to be a periplasmic or exported protein. TcpP is thought to be a trans-cytoplasmic membrane (CM) protein which may have a regulatory role  相似文献   

10.
The toxin-coregulated pilus (TCP) of Vibrio cholerae O1 is required for successful infection of the host. TcpA, the structural subunit of TCP, belongs to the type IV family of pilins, which includes the PilE pilin of Neisseria gonorrhoeae . Recently, single amino acid changes in the N-terminus of PilE were found to abolish autoagglutination in gonococci. As type IV pilins demonstrate some similarities in function and amino acid sequence, site-directed mutagenesis and allelic exchange were used to create corresponding mutations in TcpA. All four mutant strains demonstrated autoagglutination defects, and all were highly defective for colonization in the infant mouse model. These results support the previously proposed correlation between autoagglutination and colonization. Finally, all four mutants are serum sensitive, indicating that TcpA plays a role in serum resistance, a phenotype previously attributed to TcpC. As the mutations have similar effects in N. gonorrhoeae and V. cholerae , our results support the idea that type IV pilins have similar functions in a variety of pathogenic bacteria.  相似文献   

11.
The toxin co-regulated pilus (Tcp) of Vibrio cholerae appears to be a major protective antigen. By cosmid cloning we have isolated a number of clones capable of converting Tcp- El Tor strains of V. cholerae to Tcp+. A synthetic oligodeoxyribonucleotide probe based upon the N-terminal amino acid sequence of TcpA, has been used to localize the structural gene within the cosmid clones. Using suitable subclones, the nucleotide sequence of the tcpA gene has been determined. The gene encodes a 23.3-kDa pre-protein which in its mature form has a size of 20.3 kDa. The N-terminal leader peptide or signal sequence is atypical and does not conform with the usual rules of such sequences. The TcpA protein shows some similarities to the major pilins of the methylated phenylalanine type or type-4 pili from other bacteria; however, it is sufficiently different that it may represent a new class.  相似文献   

12.
Pili were found on the cell surface of non-adhesive Vibrio cholerae O1 Biotype E1 Tor as well as the adhesive strain. Purified pili of the adhesive and non-adhesive strains were morphologically, electrophoretically, and immunologically, indistinguishable from each other. The molecular weights of both pilin (subunit protein of the pilus) were about 16,000 daltons as determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. These 16 kDa pili are different from the pilus colonization factor, which is a 20.5 kDa protein, reported by Taylor et al. The 16 kDa pili of Vibrio cholerae O1 Biotype E1 Tor have hemagglutinating activity, but may have no role in colonization, because non-adhesive strains also have such pili.  相似文献   

13.
Pandemic V. cholerae strains in the O1 serogroup have 2 biotypes: classical and El Tor. The classical biotype strains of the sixth pandemic, which encode the classical type cholera toxin (CT), have been replaced by El Tor biotype strains of the seventh pandemic. The prototype El Tor strains that produce biotype-specific cholera toxin are being replaced by atypical El Tor variants that harbor classical cholera toxin. Atypical El Tor strains are categorized into 2 groups, Wave 2 and Wave 3 strains, based on genomic variations and the CTX phage that they harbor. Whole-genome analysis of V. cholerae strains in the seventh cholera pandemic has demonstrated gradual changes in the genome of prototype and atypical El Tor strains, indicating that atypical strains arose from the prototype strains by replacing the CTX phages. We examined the molecular mechanisms that effected the emergence of El Tor strains with classical cholera toxin-carrying phage. We isolated an intermediary V. cholerae strain that carried two different CTX phages that encode El Tor and classical cholera toxin, respectively. We show here that the intermediary strain can be converted into various Wave 2 strains and can act as the source of the novel mosaic CTX phages. These results imply that the Wave 2 and Wave 3 strains may have been generated from such intermediary strains in nature. Prototype El Tor strains can become Wave 3 strains by excision of CTX-1 and re-equipping with the new CTX phages. Our data suggest that inter-chromosomal recombination between 2 types of CTX phages is possible when a host bacterial cell is infected by multiple CTX phages. Our study also provides molecular insights into population changes in V. cholerae in the absence of significant changes to the genome but by replacement of the CTX prophage that they harbor.  相似文献   

14.
《Gene》1997,192(1):71-77
Defined chromosomal mutations that lead to assembly failure of the toxin coregulated pilus (TCP) of Vibrio cholerae provide useful insights into the biogenesis of a type-4 pilus. Mutants in rfb affecting LPS O-antigen biosynthesis, and strains depleted of the cytoplasmic membrane-associated ATP-binding protein TcpT, provide contrasting TCP export-defective phenotypes acting at different locations. Mutants in the perosamine biosynthesis pathway of V. cholerae 569B result in an rfb phenotype with an LPS consisting only of core oligosaccharide and lipid A. Such strains are unable to assemble TCP, and TcpA subunits are found in the periplasm and membrane fractions. In both rfb and tcpT mutants, the export defect is specific and complete. TcpT is a member of a large family of cytoplasmic membrane-associated ATP-binding proteins which are essential in type-4 pilin systems and in many non-pilin outer membrane transporters in Gram-negative bacteria. The behaviour of translocation-arrested TcpA in rfb and tcpT mutants is indistinguishable from that within assembled pilus under a range of conditions including flotation in density gradients, chemical cross-linking, and detergent extraction experiments. From the data presently available, it would appear that TcpA requires TcpT-mediated translocation from the cytoplasmic membrane and that TcpT stabilizes the subunit at or immediately beyond this stage, before crossing the outer membrane.  相似文献   

15.
Kenya is endemic for cholera with different waves of outbreaks having been documented since 1971. In recent years, new variants of Vibrio cholerae O1 have emerged and have replaced most of the traditional El Tor biotype globally. These strains also appear to have increased virulence, and it is important to describe and document their phenotypic and genotypic traits. This study characterized 146 V. cholerae O1 isolates from cholera outbreaks that occurred in Kenya between 1975 and 2017. Our study reports that the 1975–1984 strains had typical classical or El Tor biotype characters. New variants of V. cholerae O1 having traits of both classical and El Tor biotypes were observed from 2007 with all strains isolated between 2015 and 2017 being sensitive to polymyxin B and carrying both classical and El Tor type ctxB. All strains were resistant to Phage IV and harbored rstR, rtxC, hlyA, rtxA and tcpA genes specific for El Tor biotype indicating that the strains had an El Tor backbone. Pulsed field gel electrophoresis (PFGE) genotyping differentiated the isolates into 14 pulsotypes. The clustering also corresponded with the year of isolation signifying that the cholera outbreaks occurred as separate waves of different genetic fingerprints exhibiting different genotypic and phenotypic characteristics. The emergence and prevalence of V. cholerae O1 strains carrying El Tor type and classical type ctxB in Kenya are reported. These strains have replaced the typical El Tor biotype in Kenya and are potentially more virulent and easily transmitted within the population.  相似文献   

16.
Aims: To develop simple and rapid PCR‐fingerprinting methods for Vibrio cholerae O1 (El Tor and classical biotypes) and O139 serogroup strains which cause major cholera epidemics, on the basis of the diversity of superintegron (SI) carried by these strains. Methods and Results: PCR‐restriction fragment length polymorphism (PCR‐RFLP) assay was developed targeting region between integrase gene in the SI and its nearby ORF, followed by BglI digestion. Besides, a V. cholerae repeat‐amplified fragment length polymorphism (VCR‐AFLP) assay was also developed. In the PCR‐RFLP, 94 El Tor, 29 classical and 54 O139 strains produced nine, three and six different DNA fingerprints, respectively. On the other hand, VCR‐AFLP distinguished these El Tor, classical and O139 strains into five, nine and two DNA fingerprints, respectively. Combining both assays the El Tor, classical and O139 strains could be differentiated into 11, 10 and seven different types, respectively. In a comparative study, pulsed‐field gel electrophoresis (PFGE) showed similar differentiation for El Tor (11 types), but lower discrimination for O139 (two types) and classical strains (five types). Conclusions: The PCR assays based on SI diversity can be used as a useful typing tool for epidemiological studies of V. cholerae. Significance and Impact of Study: This newly developed method is more discriminatory, simple, rapid and cost‐effective in comparison with PFGE, and thus can be widely applicable.  相似文献   

17.
The number of cholera vaccine doses required for immunity is a constraint during epidemic cholera. Protective immunity following one dose of multiple Vibrio cholerae (Vc) colonization factors (Inaba LPS El Tor, TcpA, TcpF, and CBP-A) has not been directly tested even though individual Vc colonization factors are the protective antigens. Inaba LPS consistently induced vibriocidal and protective antibodies at low doses. A LPS booster, regardless of dose, induced highly protective secondary sera. Vc protein immunogens emulsified in adjuvant were variably immunogenic. CBP-A was proficient at inducing high IgG serum titers compared with TcpA or TcpF. After one immunization, TcpA or TcpF antisera protected only when the toxin co-regulated pilus operon of the challenge Vc was induced by AKI culture conditions. CBP-A was not consistently able to induce protection independent of the challenge Vc culture conditions. These results reveal the need to understand how best to leverage the 'right' Vc immunogens to obtain durable immunity after one dose of a cholera subunit vaccine. The dominance of the protective anti-LPS antibody response over other Vc antigen antibody response needs to be controlled to find other protective antigens that can add to anti-LPS antibody-based immunity.  相似文献   

18.
《Gene》1997,192(1):79-85
Several experimental approaches have provided evidence suggesting that a domain within the C-terminal region of the TcpA pilin, delineated by the single disulfide loop, is directly responsible for the colonization function mediated by the toxin coregulated pilus (TCP) of Vibrio cholerae. This evidence includes the mapping of domains recognized by protective monoclonal antibodies to this region, the ability of peptides from within this region to elicit cholera protective antibody, the construction of tcpA missense mutations that abolish TCP function, and the requirement of a periplasmic disulfide isomerase to produce functional TCP.  相似文献   

19.
The genomes of Vibrio cholerae O1 Matlab variant MJ-1236, Mozambique O1 El Tor variant B33, and altered O1 El Tor CIRS101 were sequenced. All three strains were found to belong to the phylocore group 1 clade of V. cholerae, which includes the 7th-pandemic O1 El Tor and serogroup O139 isolates, despite displaying certain characteristics of the classical biotype. All three strains were found to harbor a hybrid variant of CTXΦ and an integrative conjugative element (ICE), leading to their establishment as successful clinical clones and the displacement of prototypical O1 El Tor. The absence of strain- and group-specific genomic islands, some of which appear to be prophages and phage-like elements, seems to be the most likely factor in the recent establishment of dominance of V. cholerae CIRS101 over the other two hybrid strains.Vibrio cholerae, a bacterium autochthonous to the aquatic environment, is the causative agent of cholera, a life-threatening disease that causes severe, watery diarrhea. Cholera bacteria are serogrouped based on their somatic O antigens, with more than 200 serogroups identified to date (6). Only toxigenic strains of serogroups O1 and O139 have been identified as agents of cholera epidemics and pandemics; serogroups other than O1 and O139 have the potential to cause mild gastroenteritis or, rarely, local outbreaks. Genes coding for cholera toxin (CTX), ctxAB, and other virulence factors have been shown to reside in bacteriophages and various mobile genetic elements. In addition, V. cholerae serogroup O1 is differentiated into two biotypes, classical and El Tor, by a combination of biochemical traits, by sensitivity to biotype-specific bacteriophages, and more recently by nucleotide sequencing of specific genes and by molecular typing (5, 17, 19).There have been seven pandemics of cholera recorded throughout human history. The seventh and current pandemic began in 1961 in the Indonesian island of Sulawesi and subsequently spread to Asia, Africa, and Latin America; the six previous pandemics are believed to have originated in the Indian subcontinent. Isolates of the sixth pandemic were almost exclusively of the O1 classical biotype, whereas the current (seventh) pandemic is dominated by the V. cholerae O1 El Tor biotype as the causative agent, a transition occurring between 1923 and 1961. Today, the disease continues to remain a scourge in developing countries, confounded by the fact that V. cholerae is native to estuaries and river systems throughout the world (8).Over the past 20 years, several new epidemic lineages of V. cholerae O1 El Tor have emerged (or reemerged). For example, in 1992, a new serogroup, namely, O139 of V. cholerae, was identified as the cause of epidemic cholera in India and Bangladesh (25). The initial concern was that a new pandemic was beginning; however, the geographic range of V. cholerae O139 is currently restricted to Asia. Additionally, V. cholerae O1 hybrids and altered El Tor variants have been isolated repeatedly in Bangladesh (Matlab) (23, 24) and Mozambique (1). Altered V. cholerae O1 El Tor isolates produce cholera toxin of the classical biotype but can be biotyped as El Tor by conventional phenotypic assays, whereas V. cholerae O1 hybrid variants cannot be biotyped based on phenotypic tests and can produce cholera toxin of either biotype. These new variants have subsequently replaced the prototype seventh-pandemic V. cholerae O1 El Tor strains in Asia and Africa, with respect to frequency of isolation from clinical cases of cholera (27).Here, we report the genome sequence of three V. cholerae O1 variants, MJ-1236, a Matlab type I hybrid variant from Bangladesh that cannot be biotyped by conventional methods, CIRS101, an altered O1 El Tor isolate from Bangladesh which harbors ctxB of classical origin, and B33, an altered O1 El Tor isolate from Mozambique which harbors classical CTXΦ, and we compare their genomes with prototype El Tor and classical genomes. From an epidemiological viewpoint, among the three variants characterized in this study, V. cholerae CIRS101 is currently the most “successful” in that strains belonging to this type have virtually replaced the prototype El Tor in Asia and many parts of Africa, notably East Africa. This study, therefore, gives us a unique opportunity to understand why V. cholerae CIRS101 is currently the most successful El Tor variant.  相似文献   

20.
The expression of two cell-bound haemagglutinins, one sensitive to L-fucose (FSHA) and the other to D-mannose (MSHA), on Vibrio cholerae O1 strains of both the classical and the El Tor biotypes was studied by (i) agglutination of chicken and human group O erythrocytes in the presence of L-fucose or D-mannose, (ii) binding of the bacteria to L-fucose- and D-mannose-coated agarose beads, and (iii) agglutination of the bacteria by 'biotype-specific' antisera. All of the 12 classical strains studied that were isolated before 1979 gave FSHA of human O erythrocytes whereas only 6 of 17 classical strains isolated during recent epidemics expressed FSHA; a few of the classical strains expressed MSHA in addition to FSHA. All the El Tor strains gave MSHA of chicken erythrocytes and one strain also expressed FSHA. Both the cell-bound HAs were optimally expressed during the exponential phase of growth; FSHA markedly decreased during the late exponential phase while the MSHA usually persisted into the stationary phase. The expression of FSHA and MSHA correlated very well with the direct binding of vibrios to fucose- and mannose-coated agarose beads, respectively. Antiserum 'specific' for classical vibrios agglutinated classical strains expressing FSHA and also the El Tor strain exhibiting FSHA. Similarly, the anti-El Tor serum agglutinated all El Tor strains and also classical strains expressing MSHA, suggesting that the 'biotype-specific' sera were specific for the biotype-associated cell-bound HAs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号