首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
    
The innate immune system is the body's first line of defense against viruses, with pattern recognition receptors (PRRs) recognizing molecules unique to viruses and triggering the expression of interferons and other anti‐viral cytokines, leading to the formation of an anti‐viral state. The tripartite motif containing 25 (TRIM25) is an E3 ubiquitin ligase thought to be a key component in the activation of signaling by the PRR retinoic acid‐inducible gene I protein (RIG‐I). TRIM25 has recently been identified as an RNA‐binding protein, raising the question of whether its RNA‐binding activity is important for its role in innate immunity. Here, we review TRIM25's mechanisms and pathways in noninfected and infected cells. We also introduce models that explain how TRIM25 binding to RNA could modulate its functions and play part in the antiviral response. These findings have opened new lines of investigations into functional and molecular roles of TRIM25 and other E3 ubiquitin ligases in cell biology and control of pathogenic infections. This article is categorized under:
  • RNA in Disease and Development > RNA in Disease
  • RNA Interactions with Proteins and Other Molecules > Protein–RNA Interactions: Functional Implications
  • RNA Interactions with Proteins and Other Molecules > Protein–RNA Recognition
  相似文献   

2.
目的构建重组泛素连接酶SH2-U—box、SH2-RING,并克隆进入pFlag—CMV4真核表达载体,为研究靶向降解慢性粒细胞白血病(chronic myelocytic leukemia,CML)患者瘤细胞中过度活化的BCR/ABL,抑制肿瘤细胞的生长提供基础。方法设计引物,扩增接头分子Grb2的SH2结构域以及E3泛素连接酶CHIP的U—box、Cb1的RING结构域,通过重组PCR,将SH2分别与U—box、RING进行融合,融合片段双酶切之后插入真核表达载体pFlag—CMV4,经过酶切鉴定及测序后,转染HEK293T细胞,Western印迹验证重组质粒的表达。结果PCR结果提示SH2-U—box条带大小888bp,SH2一RING大小为633bp,重组质粒酶切鉴定和测序结果均正确,转染后可见融合蛋白的表达。结论成功构建真核重组表达载体pFlag—CMV4-SH2-U—box和pFlag—CMV4-SH2-RING,转染HEK293T细胞后能够正确表达,为后续研究奠定了基础。  相似文献   

3.
4.
泛素连接酶E3介导的植物干旱胁迫反应   总被引:1,自引:0,他引:1  
干旱胁迫严重影响农作物的产量和质量,制约全球的农业生产。泛素连接酶E3是一个种类繁多的大家族,涉及对植物生长发育和逆境胁迫响应等过程中关键步骤的控制。该文概述了植物干旱胁迫的调控机制和植物的泛素连接酶E3,并着重阐述了泛素连接酶E3介导的植物干旱胁迫反应及其作用机制。  相似文献   

5.
The serine/threonine kinase Akt functions in multiple cellular processes, including cell survival and tumor development. Studies of the mechanisms that negatively regulate Akt have focused on dephosphorylation-mediated inactivation. In this study, we identified a negative regulator of Akt, MULAN, which possesses both a RING finger domain and E3 ubiquitin ligase activity. Akt was found to directly interact with MULAN and to be ubiquitinated by MULAN in vitro and in vivo. Other molecular assays demonstrated that phosphorylated Akt is a substantive target for both interaction with MULAN and ubiquitination by MULAN. The results of the functional studies suggest that the degradation of Akt by MULAN suppresses cell proliferation and viability. These data provide insight into the Akt ubiquitination signaling network.  相似文献   

6.
    
Tihana Bionda 《Autophagy》2016,12(9):1683-1684
Ubiquitination plays a critical role in the activation of host immune responses to infection and serves as a signal for pathogen delivery to phagophores along the xenophagy pathway. We recently performed systematic ubiquitination site profiling of epithelial cells infected with Salmonella Typhimurium. Our findings specifically highlight components of the NFKB, membrane trafficking pathways and RHO GTPase systems as ubiquitination hubs during infection. In addition, a broad spectrum of bacterial effectors and several outer membrane proteins are ubiquitinated in infected cells. This comprehensive resource of ubiquitinome dynamics during Salmonella infection enables further understanding of the complex host-pathogen interplay and may reveal novel targets for the inhibition of Salmonella invasion and inflammation.  相似文献   

7.
Rsp5p is a conserved HECT-domain ubiquitin ligase with diverse roles in cellular physiology. Here we report a previously unknown role of Rsp5p in facilitating the stability of the cytoplasmic ribosome pool in budding yeast. Yeast strains carrying temperature-sensitive mutations in RSP5 showed a progressive decline in levels of 18S and 25S rRNAs and accumulation of rRNA decay fragments when cells grown in rich medium were shifted to restrictive temperature. This was accompanied by a decreased number of translating ribosomes and the appearance of ribosomal subunits with an abnormally low sedimentation rate in polysome analysis. Abrogating Rsp5p function affected stability of other tested noncoding RNA species (tRNA and snoRNA), but to a lower extent than that of rRNA, and also inhibited processing of rRNA and tRNA precursors, in agreement with previous studies. The breakdown of cellular ribosomes was not affected by deletion of key genes involved in autophagy, previously implicated in ribosome turnover upon starvation. Our results suggest that functional Rsp5p is required to maintain the integrity of cytoplasmic ribosomes under rich nutrient conditions.  相似文献   

8.
Ubiquitination is one of the most abundant types of protein post‐translational modification (PTM) in plant cells. The importance of ubiquitination in the regulation of many aspects of plant immunity has been increasingly appreciated in recent years. Most of the studies linking ubiquitination to the plant immune system, however, have been focused on the E3 ubiquitin ligases and the conventional ubiquitination that leads to the degradation of the substrate proteins by the 26S proteasome. By contrast, our knowledge about the role of unconventional ubiquitination that often serves as non‐degradative, regulatory signal remains a significant gap. We discuss, in this review, the recent advances in our understanding of ubiquitination in the modulation of plant immunity, with a particular focus on the E3 ubiquitin ligases. We approach the topic from a perspective of two broadly defined types of ubiquitination in an attempt to highlight the importance, yet current scarcity, in our knowledge about the regulation of plant immunity by unconventional ubiquitination.  相似文献   

9.
泛素化是真核细胞中重要的蛋白质翻译后修饰过程,通过靶向蛋白质降解或其他信号途径参与多种细胞功能.底物蛋白的多聚泛素化修饰是一个持续的过程,其中不仅涉及复杂泛素系统相关酶的参与,而且存在更为复杂的结构上相互作用与泛素链组装机理.不同的泛素链修饰决定了底物蛋白下游的不同命运,泛素结合酶E2在泛素链形成中的重要作用受到越来越多的关注.对泛素链形成机理的深入研究与认识有利于发现与泛素系统相关的疾病靶点和利用泛素化调控方法进行治疗.本综述总结了E2和E3如何决定不同泛素链形成的机制和相关的结构信息,以及两种不同的泛素链组装机制.  相似文献   

10.
Parkin 是隐性遗传性少年型帕金森病的致病基因 . 现认为 Parkin 行使泛素蛋白连接酶功能,参与蛋白质的泛素化过程 . 它的功能缺陷致使其底物蛋白质毒性积聚,从而介导多巴胺能神经元选择性死亡 . 越来越多的研究显示 Parkin 还具有神经保护作用,能对抗多种神经毒性刺激,并且可能参与路易体的形成过程,因此认为它在散发性帕金森病的致病过程中也可能起重要作用 .  相似文献   

11.
Ubiquitin modification of many cellular proteins targets them for proteasomal degradation, but in addition can also serve non-proteolytic functions. Over the last years, a significant progress has been made in our understanding of how modification of the substrates of the ubiquitin system is regulated. However, little is known on how the ubiquitin system that is comprised of ~1500 components is regulated. Here, we discuss how the biggest subfamily within the system, that of the E3 ubiquitin ligases that endow the system with its high specificity towards the numerous substrates, is regulated and in particular via self-regulation mediated by ubiquitin modification. Ligases can be targeted for degradation in a self-catalyzed manner, or through modification mediated by an external ligase(s). In addition, non-proteolytic functions of self-ubiquitination, for example activation of the ligase, of E3s are discussed.  相似文献   

12.
    
Ubiquitination is vital for multiple cellular processes via dynamic modulation of proteins related to cell growth, proliferation, and survival. Of the ubiquitination system components, E3 ubiquitin ligases and deubiquitinases have the most prominent roles in modulating tumor metastasis. This review will briefly summarize the observations and underlying mechanisms of multiple E3 ubiquitin ligases and deubiquitinases to regulate tumor metastasis. Further, we will discuss the relationship and importance between ubiquitination components and tumor progression.  相似文献   

13.
Since its discovery as a post-translational signal for protein degradation, our understanding of ubiquitin (Ub) has vastly evolved. Today, we recognize that the role of Ub signaling is expansive and encompasses diverse processes including cell division, the DNA damage response, cellular immune signaling, and even organismal development. With such a wide range of functions comes a wide range of regulatory mechanisms that control the activity of the ubiquitylation machinery. Ub attachment to substrates occurs through the sequential action of three classes of enzymes, E1s, E2s, and E3s. In humans, there are 2 E1s, ∼35 E2s, and hundreds of E3s that work to attach Ub to thousands of cellular substrates. Regulation of ubiquitylation can occur at each stage of the stepwise Ub transfer process, and substrates can also impact their own modification. Recent studies have revealed elegant mechanisms that have evolved to control the activity of the enzymes involved. In this minireview, we highlight recent discoveries that define some of the various mechanisms by which the activities of E3-Ub ligases are regulated.  相似文献   

14.
    
During leaf senescence, resources are recycled by redistribution to younger leaves and reproductive organs. Candidate pathways for the regulation of onset and progression of leaf senescence include ubiquitin‐dependent turnover of key proteins. Here, we identified a novel plant U‐box E3 ubiquitin ligase that prevents premature senescence in Arabidopsis plants, and named it SENESCENCE‐ASSOCIATED E3 UBIQUITIN LIGASE 1 (SAUL1). Using in vitro ubiquitination assays, we show that SAUL1 has E3 ubiquitin ligase activity. We isolated two alleles of saul1 mutants that show premature senescence under low light conditions. The visible yellowing of leaves is accompanied by reduced chlorophyll content, decreased photochemical efficiency of photosystem II and increased expression of senescence genes. In addition, saul1 mutants exhibit enhanced abscisic acid (ABA) biosynthesis. We show that application of ABA to Arabidopsis is sufficient to trigger leaf senescence, and that this response is abolished in the ABA‐insensitive mutants abi1‐1 and abi2‐1, but enhanced in the ABA‐hypersensitive mutant era1‐3. We found that increased ABA levels coincide with enhanced activity of Arabidopsis aldehyde oxidase 3 (AAO3) and accumulation of AAO3 protein in saul1 mutants. Using label transfer experiments, we showed that interactions between SAUL1 and AAO3 occur. This suggests that SAUL1 participates in targeting AAO3 for ubiquitin‐dependent degradation via the 26S proteasome to prevent premature senescence.  相似文献   

15.
16.
17.
18.
Several mechanisms have been proposed for the synthesis of substrate-linked ubiquitin chains. HECT ligases directly catalyse protein ubiquitination and have been found to non-covalently interact with ubiquitin. We report crystal structures of the Nedd4 HECT domain, alone and in complex with ubiquitin, which show a new binding mode involving two surfaces on ubiquitin and both subdomains of the HECT N-lobe. The structures suggest a model for HECT-to-substrate ubiquitin transfer, in which the growing chain on the substrate is kept close to the catalytic cysteine to promote processivity. Mutational analysis highlights differences between the processes of substrate polyubiquitination and self-ubiquitination.  相似文献   

19.
  总被引:10,自引:0,他引:10  
Loss of the tumour suppressor BRCA1 results in profound chromosomal instability. The fundamental defect underlying this catastrophic phenotype is not yet known. In vivo, BRCA1 forms a heterodimeric complex with BARD1. Both proteins contain an N-terminal zinc RING-finger domain which confers E3 ubiquitin ligase activity. We have isolated full-length human BRCA1/BARD1 complex and have shown that it has a dual E3 ubiquitin ligase activity. First, it mediates the monoubiquitylation of nucleosome core histones in vitro, including the variant histone H2AX that co-localizes with BRCA1 at sites of DNA damage. Secondly, BRCA1/BARD1 catalyses the formation of multiple polyubiquitin chains on itself. Remarkably, this auto-polyubiquitylation potentiates the E3 ubiquitin ligase activity of the BRCA1/BARD1 complex >20-fold. Even though BRCA1 has been reported to associate with a C-terminal ubiquitin hydrolase, BAP1, this enzyme does not appear to function in the deubiquitylation of the BRCA1/BARD1 complex.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号