首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Genomic constructs comprising the ovine β-lactoglobulin gene are expressed in a position-independent manner in the mammary gland of transgenic mice. In some lines however, constitutive low-level transgene expression was detected in all other tissues. This ectopic expression presumably represents a position-dependent phenomenon since it was observed in only a proportion (40%) of the lines generated. Different lines of BLG transgenic mice displayed similar temporal patterns of ectopic expression. This pattern differed from that of BLG in the mammary gland. These data imply that the DNA elements that direct position-independent expression of β-lactoglobulin transgenes in the mammary gland do not have the ability to insulate them from position effects in other tissues. Furthermore, the relatively high frequency and constitutive nature of ectopic expression suggests that transgene integration may not be totally random.  相似文献   

2.
A bovine β-lactoglobulin hydrolysate, obtained by the hydrolysis by the Glu specific enzyme Bacillus licheniformis protease (BLP), was fractionated at pH 7.0 into a soluble and an insoluble fraction and characterized by LC-MS. From the 26 peptides identified in the soluble fraction, five peptides (A[f97-112] = [f115-128], AB[f1-45], AB[f135-157], AB[f135-158], and AB[f138-162]) bound to β-lactoglobulin at room temperature. After heating of β-lactoglobulin in the presence of peptides, eight peptides were identified in the pellet formed, three of them belonging to the previously mentioned peptides. Principle component analysis revealed that the binding at room temperature (to β-lactoglobulin) was related to the total hydrophobicity and the total charge of the peptides. The binding to the unfolded protein could not be attributed to distinct properties of the peptides. The presence of the peptides caused a 50% decrease in denaturation enthalpy (from 148 ± 3 kJ/mol for the protein alone to 74 ± 2 kJ/mol in the presence of peptides), while no change in secondary structure or denaturation temperature was observed. At temperatures <85 °C, the addition of peptides resulted in a 30-40% increase of precipitated β-lactoglobulin. At pH < 6, no differences in the amount of aggregated β-lactoglobulin were observed, which indicates the lack of binding of peptides to β-lactoglobulin at those pH values as was also observed by SELDI-TOF-MS. Although only a few peptides were found to participate in aggregation, suggesting specificity, principal component analysis was unable to identify specific properties responsible for this.  相似文献   

3.
The bindings of biogenic polyamines spermine (spm), spermidine (spmd) and synthetic polyamines 3,7,11,15-tetrazaheptadecane·4HCl (BE-333) and 3,7,11,15,19-pentazahenicosane·5HCl (BE-3333) with β-lactoglobulin (β-LG) were determined in aqueous solution. FTIR, UV-vis, CD and fluorescence spectroscopic methods as well as molecular modeling were used to determine the polyamine binding sites and the effect of polyamine complexation on protein stability and secondary structure. Structural analysis showed that polyamines bind β-LG via both hydrophilic and hydrophobic contacts. Stronger polyamine-protein complexes formed with synthetic polyamines than biogenic polyamines, with overall binding constants of Kspm-β-LG = 3.2(±0.6) × 104 M−1, Kspmd-β-LG = 1.8(±0.5) × 104 M−1, KBE-333-β-LG = 5.8(±0.3) × 104 M−1 and KBE-3333-β-LG = 6.2(±0.05) × 104 M−1. Molecular modeling showed the participation of several amino acids in the polyamine complexes with the following order of polyamine-protein binding affinity: BE-3333 > BE-333 > spermine > spermidine, which correlates with their positively charged amino group content. Alteration of protein conformation was observed with a reduction of β-sheet from 57% (free protein) to 55-51%, and a major increase of turn structure from 13% (free protein) to ∼21% in the polyamine-β-LG complexes, indicating a partial protein unfolding.  相似文献   

4.
Circular dichroism spectra of two -peptides, i.e. peptides composed of -amino acids, calculated using ensembles of configurations obtained by molecular dynamics simulation are presented. The calculations were based on 200 ns simulations of a -heptapeptide in methanol at 298 K and 340 K and a 50 ns simulation of a -hexapeptide in methanol at 340 K. In the simulations the peptides sampled both folded (helical) and unfolded structures. Trajectory structures with common backbone conformations were identified and grouped into clusters. The CD spectra were calculated for individual structures, based on peptide-group dipole transition moments obtained from semi-empirical molecular orbital theory and using the so-called matrix method. The single-structure spectra were then averaged over entire trajectories and over clusters of structures. Although certain features of the experimental CD spectra of the -peptides are reproduced by the trajectory-average spectra, there exist clear differences between the two sets of spectra in both wavelength and peak intensities. The analysis of individual contributions to the average spectra shows that, in general, the interpretation of a CD signal in terms of a single structure is not possible. Moreover, there is a large variation in the CD spectra calculated for a set of individual structures that belong to the same cluster, even when a structurally tight clustering criterion is used. This indicates that the CD spectra of these peptides are very sensitive to small local structural differences.  相似文献   

5.
E.T. Wei  A. Lee  J.K. Chang 《Life sciences》1980,26(18):1517-1522
In the urethane-anesthetized rat, intravenous injections of morphine produced a short-lasting fall in heart rate and blood pressure. The fall in heart rate (which is vagal in origin) was used here to bioassay peptides related to the enkephalins [-enk] and β-casomorphin [β-C, H-Tyr-Pro-Phe-Pro-Gly-Pro-Ile-OH]. A > 10% decrease in heart rate was used as a quantal index of response and the intravenous ED50 [μmol/kg] were estimated as: methionine-enk, 1.3 ± .24; leucine-enk, 1.5 ± .20; [D-Ala2, D-Leu5]-enk, 0.45 ± .05; [D-Ala2, NMePhe4, Met(0)5-ol]-enk, 0.0011 ± .0002; H-Tyr-Arg-OH, > 2.0; β-C (1–7), > 2.0; β-C(1–5), > 2.0; β-C(1–4), > 4.0; β-C(1–3), > 2.0; morphine sulfate, 0.11 ± .03; and human β-endorphin,, 0.07 ± .01. One β-C derivative, H-Tyr-Pro-Phe-Pro-NH2 [β-C(1–4)-NH2], was active at 0.32 ± .08. Naloxone pretreatment blocked the bradycardia produced by the enkephalins and β-C(1–4)-NH2. The bioassay described here, based on heart rate, may prove to be useful for the rapid detection and estimation of the in vivo pharmacological activities of new opioid peptides.  相似文献   

6.
7.
Protein aggregates can be stabilised by disulphide bridges. The whey protein β-lactoglobulin (β-lac) contains a disulphide bridge and a free cysteine that are shielded from the solvent by an α-helix. These groups are important in the thiol–disulphide exchange that occurs during aggregation and gelation of β-lac. Replica exchange molecular dynamics simulations show that the exposure mechanism is very different for the two buried groups. While melting of the α-helix enhances exposure of the free cysteine, it does not for the buried bridge. These findings shed light on the molecular mechanism of the first step of β-lac denaturation and aggregation.  相似文献   

8.
《Biophysical journal》2022,121(13):2514-2525
High pressure (HP) is a particularly powerful tool to study protein folding/unfolding, revealing subtle structural rearrangements. Bovine β-lactoglobulin (BLG), a protein of interest in food science, exhibits a strong propensity to bind various bioactive molecules. We probed the effects of the binding of biliverdin (BV), a tetrapyrrole linear chromophore, on the stability of BLG under pressure, by combining in situ HP small-angle neutron scattering (SANS) and HP-UV absorption spectroscopy. Although BV induces a slight destabilization of BLG during HP-induced unfolding, a ligand excess strongly prevents BLG oligomerization. Moreover, at SANS resolution, an excess of BV induces the complete recovery of the protein “native” 3D structure after HP removal, despite the presence of the BV covalently bound adduct. Mass spectrometry highlights the crucial role of cysteine residues in the competitive and protective effects of BV during pressure denaturation of BLG through SH/S-S exchange.  相似文献   

9.
10.
Three cyanogen bromide peptides from native goat β-lactoglobulin have been isolated by gel-filtration. The N-terminal fragment has been identified and its sequence was determined to be: Ile-Val-Thr-Gln-Thr-. The results are compared with the N-terminal region of cow β-lactoglobulins A and B.  相似文献   

11.
Sakurai K  Fujioka S  Konuma T  Yagi M  Goto Y 《Biochemistry》2011,50(29):6498-6507
Folding experiments have suggested that some proteins have kinetic intermediates with a non-native structure. A simple G ?o model does not explain such non-native intermediates. Therefore, the folding energy landscape of proteins with non-native intermediates should have characteristic properties. To identify such properties, we investigated the folding of bovine β-lactoglobulin (βLG). This protein has an intermediate with a non-native α-helical structure, although its native form is predominantly composed of β-structure. In this study, we prepared mutants whose α-helical and β-sheet propensities are modified and observed their folding using a stopped-flow circular dichroism apparatus. One interesting finding was that E44L, whose β-sheet propensity was increased, showed a folding intermediate with an amount of β-structure similar to that of the wild type, though its folding took longer. Thus, the intermediate seems to be a trapped intermediate. The high α-helical propensity of the wild-type sequence likely causes the folding pathway to circumvent such time-consuming intermediates. We propose that the role of the non-native intermediate is to control the pathway at the beginning of the folding reaction.  相似文献   

12.
The 3’ end of the β-tubulin gene was amplified from 50 isolates of 45 species in Glomeromycota. The analyses included a representative selection of all families except Pacisporaceae and Geosiphonaceae. Phylogenetic analyses excluded three intron regions at the same relative positions in all species due to sequence and length polymorphisms. The β-tubulin gene phylogeny was similar to the 18S rRNA gene phylogeny at the family and species level, but it was not concordant at the order level. Species in Gigasporaceae and Glomeraceae grouped together but without statistical support. Paralogous sequences in Glomus species likely contributed to phylogenetic ambiguity. Trees generated using different fungal phyla as out-groups yielded a concordant topology. Family relationships within the Glomeromycota did not change regardless if the third codon position was included or excluded from the analysis. Multiple clones from three isolates of Scutellospora heterogama yielded divergent sequences. However, phylogenetic patterns suggested that only a single copy of the β-tubulin gene was present, with variation attributed to intraspecific sequence divergence.  相似文献   

13.
14.
The milk protein β-lactoglobulin (βLG) dominates the properties of whey aggregates in food products. Here we use spectroscopic and calorimetric techniques to elucidate how anionic, cationic and non-ionic surfactants interact with bovine βLG and modulate its heat-induced aggregation. Alkyl trimethyl ammonium chlorides (xTAC) strongly promote aggregation, while sodium alkyl sulfates (SxS) and alkyl maltopyranosides (xM) reduce aggregation. Sodium dodecyl sulfate (SDS) binds to non-aggregated βLG in several steps, but reduction of aggregation was associated with the first binding step, which occurs far below the critical micelle concentration. In contrast, micellar concentrations of xMs are required to reduce aggregation. The ranking order for reduction of aggregation (normalized to their tendency to self-associate) was C10-C12>C8>C14 for SxS and C8>C10>C12>C14>C16 for xM. xTAC promote aggregation in the same ranking order as xM reduce it. We conclude that SxS reduce aggregation by stabilizing the protein's ligand-bound state (the melting temperature t(m) increases by up to 10°C) and altering its charge potential. xM monomers also stabilize the protein's ligand-bound state (increasing t(m) up to 6°C) but in the absence of charged head groups this is not sufficient by itself to prevent aggregation. Although micelles of both anionic and non-ionic surfactants destabilize βLG, they also solubilize unfolded protein monomers, leaving them unavailable for protein-protein association and thus inhibiting aggregation. Cationic surfactants promote aggregation by a combination of destabilization and charge neutralization. The food compatible surfactant sodium dodecanoate also inhibited aggregation well below the cmc, suggesting that surfactants may be a practical way to modulate whey protein properties.  相似文献   

15.
Chen W  van der Kamp MW  Daggett V 《Biochemistry》2010,49(45):9874-9881
Prion diseases are fatal neurodegenerative disorders that involve the conversion of the normal cellular form of the prion protein (PrP(C)) to a misfolded pathogenic form (PrP(Sc)). There are many genetic mutations of PrP associated with human prion diseases. Three of these point mutations are located at the first strand of the native β-sheet in human PrP: G131V, S132I, and A133V. To understand the underlying structural and dynamic effects of these disease-causing mutations on the human PrP, we performed molecular dynamics of wild-type and mutated human PrP. The results indicate that the mutations induced different effects but they were all related to misfolding of the native β-sheet: G131V caused the elongation of the native β-sheet, A133V disrupted the native β-sheet, and S132I converted the native β-sheet to an α-sheet. The observed changes were due to the reorientation of side chain-side chain interactions upon introducing the mutations. In addition, all mutations impaired a structurally conserved water site at the native β-sheet. Our work suggests various misfolding pathways for human PrP in response to mutation.  相似文献   

16.
Proteolytic digestion of bovine β-lactoglobulin by trypsin yielded four peptide fragments with bactericidal activity. The peptides were isolated and their sequences were found as follows: VAGTWY (residues 15–20), AASDISLLDAQSAPLR (residues 25–40), IPAVFK (residues 78–83) and VLVLDTDYK (residues 92–100). The four peptides were synthesized and found to exert bactericidal effects against the Gram-positive bacteria only. In order to understand the structural requirements for antibacterial activity, the amino acid sequence of the peptide VLVLDTDYK was modified. The replacement of the Asp (98) residue by Arg and the addition of a Lys residue at the C-terminus yielded the peptide VLVLDTRYKK which enlarged the bactericidal activity spectrum to the Gram-negative bacteria Escherichia coli and Bordetella bronchiseptica and significantly reduced the antibacterial capacity of the peptide toward Bacillus subtilis. By data base searches with the sequence VLVLDTRYKK a high homology was found with the peptide VLVATLRYKK (residues 55–64) of human blue-sensitive opsin, the protein of the blue pigment responsible for color vision. A peptide with this sequence was synthesized and assayed for bactericidal activity. VLVATLRYKK was strongly active against all the bacterial strains tested. Our results suggest a possible antimicrobial function of β-lactoglobulin after its partial digestion by endopeptidases of the pancreas and show moreover that small targeted modifications in the sequence of β-lactoglobulin could be useful to increase its antimicrobial function.  相似文献   

17.
β-Lactoglobulin was phosphorylated with 20, 40, and 80 mol of POCl3/mol protein in the presence of 4, 5, and 6 molar excess of basic amino acid per mol POCl3. Maximal phosphorylation yields of 5 and 3 mol P/mol protein were achieved when the highest stoichiometries of POCl3/arginine and lysine were used. Proportional high amounts of basic amino acids were also grafted to the protein molecule during its phosphorylation through the phosphoamide bond. Modified proteins displayed increased negative charges and reduced isoelectric points and were monomeric. The phosphorylated and phosphoamidatedβ-lactoglobulin showed improved functional properties.  相似文献   

18.
Spectrophotometric and light scattering measurements, along with optical microscopy, were used to follow the complexation and coacervation process that occur when β-lactoglobulin (BLG)/tragacanthin (T) mixed dispersions (0.3 wt.% total concentration; BLG:T ratio of 2:1) were brought from pH 6 to pH 2. In addition, the coupling of slow in situ acidification of the mixture and rheometry was utilised to gain deeper insights into pH-induced structural transitions during the assembly process. The results obtained by this multi-methodological approach allowed the associative phase separation process to be parameterised in terms of a set of characteristic pH values (~5.3, ~4.8, ~4.5, ~4.15, ~4, ~3.8, ~2.5) at which critical structural changes took place. Investigation of the absorbance profiles of complexed/coacervated systems as a function of time revealed that several transitions could occur at different time scales. Morphological changes in the assemblies and the subsequent formation of some flocculant substances during the late stage of process were clearly visualised using microscopy.  相似文献   

19.
Fibrils of β-lactoglobulin, formed by heating at pH 2, were titrated with a sulfated polysaccharide (κ-carrageenan) to determine the morphology and mechanism of complex formation at low pH. Structural information on the resultant complexes was gathered using transmission electron microscopy, atomic force microscopy, Doppler electrophoresis, and small-angle neutron scattering. Electrophoresis demonstrated that the carrageenan complexed with protein fibrils until reaching a maximum complexation efficiency at a protein/polysaccharide (r) weight ratio of 5:3. Neutron scattering and microscopy indicated an increasing formation of spherical aggregates attached along the protein fibrils with increases in the carrageenan concentration. These globular particles had an average diameter of 30 nm. Small-angle neutron scattering of these complexes could be accurately described by a form factor corresponding to multistranded twisted ribbons with spherical aggregates along their contour length, arranged in a necklace configuration.  相似文献   

20.
Lactoglobulin is a globular milk protein for which physiological function has not been clarified. Due to its binding properties lactoglobulin might serve as a carrier for bioactive molecules. Binding of 12-, 14-, 16- and 18-carbon saturated fatty acids to bovine β-lactoglobulin has been characterised by isothermal titration calorimetry and X-ray crystallography as a part of systematic studies of lactoglobulin complexes with ligands of biological importance. The thermodynamic parameters have been determined for lauric, myristic and palmitic acid complexes revealing systematic decrease of enthalpic and increase of entropic component of ΔG with elongation of aliphatic chain. In all crystal structures determined with resolution 1.9-2.1?, single fatty acid molecule was found in the β-barrel in extended conformation with individual pattern of interactions. Location of a fatty acid in the binding site depends on the length of aliphatic chain and influences polar interactions between protein and ligand. Systematic changes of entropic component indicate important role of water in binding process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号