首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The dhp1+ gene of Schizosaccharomyces pombe is a homolog of Saccharomyces cerevisiae HKE1/RAT1/TAP1 gene that is involved in RNA metabolism such as RNA trafficking and RNA synthesis. dhp1+ is also related to S. cerevisiae DST2 (SEP1) that encodes a DNA strand exchange protein required for sporulation and homologous recombination in S.cerevisiae. We isolated several clones of Dhm1, a mouse homolog of dhp1+, from mouse spermatocyte cDNA library and determined its nucleotide sequence. The Dhm1 gene consists of an open reading frame predicting a protein with 947 amino acids and molecular weight of 107,955. Northern blot analysis revealed that Dhm1 is transcribed at high level in testis, liver and kidney. The predicted product of Dhm1 (Dhm1p) has a significant homology with Dhp1p, Hke1p/Rat1p/Tap1p and Dst2p. In particular, Dhm1p, Dhp1p and Hke1p/Rat1p/Tap1p share strong similarity at the two regions of their N- and C-terminal parts. The Dhm1 gene on a multicopy plasmid rescued the temperature-sensitivity of dhp1ts and lethality of dhp1 null mutation, suggesting that Dhm1 is a mouse homolog of S.pombe dhp1+ and functions similarly in mouse as dhp1+.  相似文献   

2.
We isolatedand sequenced a human cDNA (designated as hSEP1)encoding both a homologue of mouse Dhm2 and budding yeast SEP1.The gene was shown to be locatedon the long arm of chromosome3 (3q25-26.1). The putative hSEP1 product (hSEP1p) consistedof 1694 amino acid residues with a molecular mass of about 190kDa. Northern blot analysis showeda major 10-kb mRNA expressedubiquitously in variousorgans as well as a minor 5.5-kb mRNAexpressed relatively highly in the testis and placenta. hSEP1pis localizedin the cytoplasm as examinedb y cytochemical andWestern blot analyses of fractionated cellular extracts. Thebiological function of hSEP1p was discussed in correlation withits cytoplasmic localization.  相似文献   

3.
We have identified a Caenorhabditis elegans homolog of p34cdc2 kinase. The C. elegans homolog, ncc-1, is ~-60% identical to p34cdc2 of Homo sapiens. When expressed from a constitutive yeast promoter, ncc-1 is capable of complementing a conditional lethal mutation in the CDC28 gene of Saccharomyces cerevisiae, indicating that this C. elegans homolog can properly regulate the cell cycle.  相似文献   

4.
sep1+ encodes a Schizosaccharomyces pombe homolog of the HNF-3/forkhead family of the tissue-specific and developmental gene regulators identified in higher eukaryotes. Its mutant allele sep1-1 causes a defect in cytokinesis and confers a mycelial morphology. Here we report on genetic interactions of sep1-1 with the M-phase initiation mutations wee1, cdc2-1w, and cdc25-22. The double mutants sep1-1 wee1 and sep1-1 cdc2-1w form dikaryon cells at high frequency, which is due to nuclear division in the absence of cell division. The dikaryosis is reversible and suppressible by cdc25-22. We propose that the genes wee1+, cdc2+, cdc25+, and sep1+ form a regulatory link between the initiation of mitosis and the initiation of cell division.  相似文献   

5.
6.
Saccharomyces cerevisiae cells lacking the SEP1 (also known as XRN1, KEM1, DST2, RAR5) gene function exhibit a number of phenotypes in cellular processes related to microtubule function. Mutant cells show increased sensitivity to the microtubule-destabilizing drug benomyl, increased chromosome loss, a karyogamy defect, impaired spindle pole body separation, and defective nuclear migration towards the bud neck. Analysis of the arrest morphology and of the survival during arrest strongly suggests a structural defect accounting for the benomyl hypersensitivity, rather than a regulatory defect in a checkpoint. Biochemical analysis of the purified Sep1 protein demonstrates its ability to promote the polymerization of procine brain and authentic S.cerevisiae tubulin into flexible microtubules in vitro. Furthermore, Sep1 co-sediments with these microtubules in sucrose cushion centrifugation. Genetic analysis of double mutant strains containing a mutation in SEP1 and in one of the genes coding for alpha- or beta-tubulin further suggests interaction between Sep1 and microtubules. Taken together these three lines of evidence constitute compelling evidence for a role of Sep1 as an accessory protein in microtubule function in the yeast S.cerevisiae.  相似文献   

7.
We have identified a Caenorhabditis elegans homolog of p34cdc2 kinase. The C. elegans homolog, ncc-1, is -60% identical to p34cdc2 of Homo sapiens. When expressed from a constitutive yeast promoter, ncc-1 is capable of complementing a conditional lethal mutation in the CDC28 gene of Saccharomyces cerevisiae, indicating that this C. elegans homolog can properly regulate the cell cycle.  相似文献   

8.
9.
A. Grallert  I. Miklos  M. Sipiczki 《Protoplasma》1997,198(3-4):218-229
Summary In most eukaryotic organisms that have cell walls, cell separation or cytokinesis is a degradative enzymatic process. In the fission yeastSchizosaccharomyces pombe, it is a post-M-phase event that includes the degradation of part of the cell wall and the primary septum. We describe the isolation of mutants partially defective in cytokinesis by enrichment of clones resistant to cell-wall lytic enzymes. The mutations confer mycelial morphology (chains of non-separated cells) and define four genes.Sep2-SA2 was subjected to detailed genetic and cytological analysis. Its cells frequently form complex septa composed of multiple layers, which appear as twin septa separated by anucleate minicells if the cell length is extended. This suggests that a polar signal-like mechanism may also operate inS. pombe during division-site selection andsep2 + takes part in it.Sep2 + seems to be involved in several cell cycle functions because its mutation can transiently block cell-cycle progression after nuclear division and provoke a transition from haploidy to diploidy in the double mutantsep2-SA2 cexl-SA2. Cexl-SA2 is another novel mutation which causes cell-length extension.Abbreviations DAPI 4,6-diamidino-2-phenylindole - YEA yeast extract agar - YEL yeast extract liquid - SMA synthetic minimal agar - MEA malt extract agar  相似文献   

10.
Vegetatively grown Saccharomyces cerevisiae cells contain an activity that promotes a number of homologous pairing reactions. A major portion of this activity is due to strand exchange protein 1 (Sep1), which was originally purified as a 132,000-Mr species (R. Kolodner, D. H. Evans, and P. T. Morrison, Proc. Natl. Acad. Sci. USA 84:5560-5564, 1987). The gene encoding Sep1 was cloned, and analysis of the cloned gene revealed a 4,587-bp open reading frame capable of encoding a 175,000-Mr protein. The protein encoded by this open reading frame was overproduced and purified and had a relative molecular weight of approximately 160,000. The 160,000-Mr protein was at least as active in promoting homologous pairing as the original 132,000-Mr species, which has been shown to be a fragment of the intact 160,000-Mr Sep1 protein. The SEP1 gene mapped to chromosome VII within 20 kbp of RAD54. Three Tn10LUK insertion mutations in the SEP1 gene were characterized. sep1 mutants grew more slowly than wild-type cells, showed a two- to fivefold decrease in the rate of spontaneous mitotic recombination between his4 heteroalleles, and were delayed in their ability to return to growth after UV or gamma irradiation. Sporulation of sep1/sep1 diploids was defective, as indicated by both a 10- to 40-fold reduction in spore formation and reduced spore viability of approximately 50%. The majority of sep1/sep1 diploid cells arrested in meiosis after commitment to recombination but prior to the meiosis I cell division. Return-to-growth experiments showed that sep1/sep1 his4X/his4B diploids exhibited a five- to sixfold greater meiotic induction of His+ recombinants than did isogenic SEP1/SEP1 strains. sep1/sep1 mutants also showed an increased frequency of exchange between HIS4, LEU2, and MAT and a lack of positive interference between these markers compared with wild-type controls. The interaction between sep1, rad50, and spo13 mutations suggested that SEP1 acts in meiosis in a pathway that is parallel to the RAD50 pathway.  相似文献   

11.
Lee CF  Pu HY  Wang LC  Sayler RJ  Yeh CH  Wu SJ 《Planta》2006,224(2):482-483
Previously, the growth of Arabidopsis hit1-1 (heat-intolerant) mutant was found to be inhibited by both heat and water stress (Wu et al. in J Plant Physiol 157:543–547, 2000). In order to determine the genetic mutation underlying the hit1-1 phenotype, map-based cloning of HIT1 gene was conducted. Transformation of the hit1-1 mutant with a HIT1 cDNA clone reverts the mutant to the heat tolerance phenotype, confirming the identity of HIT1. Sequence analysis revealed the HIT1 gene encodes a protein of 829 amino acid residues and is homologous to yeast (Saccharomyces cerevisiae) Vps53p protein. The yeast Vps53p protein has been shown to be a tethering factor that associates with Vps52p and Vps54p in a complex formation involved in the retrograde trafficking of vesicles to the late Golgi. An Arabidopsis homolog of yeast Vps52p has previously been identified and mutation of either the homolog or HIT1 by T-DNA insertion resulted in a male-specific transmission defect. The growth of yeast vps53Δ null mutant also shows reduced thermotolerance, and expression of HIT1 in this mutant can partially complement the defect, supporting the possibility of a conserved biological function for Vps53p and HIT1. Collectively, the hit1-1 is the first mutant in higher plant linking a homolog of the vesicle tethering factor to both heat and osmotic stress tolerance.Electronic Supplementary Material Supplementary material is available for this article at and is accessible for authorized users.  相似文献   

12.
13.
14.
The Sep1 (also known as Kem1, Xrn1, Rar5, DST2/Stp) protein of Saccharomyces cerevisiae is an Mr 175,000 multifunctional exonuclease with suspected roles in RNA turnover and in the microtubular cytoskeleton as well as in DNA recombination and DNA replication. The most striking phenotype of SEP1 null mutations is quantitative arrest during meiotic prophase at the pachytene stage. We have constructed a set of N- and C-terminal as well as internal deletions of the large SEP1 gene. Analysis of these deletion mutations on plasmids in a host carrying a null allele (sep1) revealed that at least 270 amino acids from the C-terminus of the wildtype protein were dispensable for complementing the slow growth and benomyl hypersensitivity of a null mutant. In contrast, any deletion at the N-terminus abrogated complementing activity for these phenotypes. The sequences essential for function correspond remarkably well with the regions of Sep1 that are homologous to its Schizosaccharomyces pombe counterpart Exo2. In addition, these experiments showed that, despite the high intracellular levels of Sep1, over-expression of this protein above these levels is detrimental to the cell. We discuss the potential cellular roles of the Sep1 protein as a microtubule-nucleic acid interface protein linking its suspected function in the microtubular cytoskeleton with its role as a nucleic acid binding protein.  相似文献   

15.
In a search for components involved in Mn2+ homeostasis in the budding yeast Saccharomyces cerevisiae, we isolated a mutant with modifications in Mn2+ transport. The mutation was found to be located in HIP1, a gene known to encode a high-affinity permease for histidine. The mutation, designated hip1–272, caused a frameshift that resulted in a stop codon at position 816 of the 1812-bp ORF. This mutation led to Mn2+ resistance, whereas the corresponding null mutation did not. Both hip1–272 cells and the null mutant exhibited low tolerance to divalent cations such as Co2+, Ni2+, Zn2+, and Cu2+. The Mn2+ phenotype was not influenced by supplementary histidine in either mutant, whereas the sensitivity to other divalent cations was alleviated by the addition of histidine. The cellular Mn2+ content of the hip1–272 mutant was lower than that of wild type or null mutant, due to increased rates of Mn2+ efflux. We propose that Hip1p is involved in Mn2+ transport, carrying out a function related to Mn2+ export.  相似文献   

16.
17.
End-binding 1 (EB1) proteins are evolutionarily conserved components of microtubule (MT) plus-end tracking protein that regulate MT dynamics. Giardia lamblia, with two nuclei and cytoskeletal structures, requires accurate MT distribution for division. In this study, we show that a single EB1 homolog gene of G. lamblia regulates MT dynamics in mitosis. The haemagglutinin-tagged G. lamblia EB1 (GlEB1) localizes to the nuclear envelopes and median bodies, and is transiently present in mitotic spindles of dividing cells. Knockdown of GlEB1 expression using the morpholinos-based anti-EB1 oligonucleotides, resulted in a significant defect in mitosis of Giardia trophozoites. The MT-binding assays using recombinant GlEB1 (rGlEB1) proteins demonstrated that rGlEB1102–238, but not rGlEB11–184, maintains an MT-binding ability comparable with that of the full length protein, rGlEB11–238. Size exclusion chromatography showed that rGlEB1 is present as a dimer formed by its C-terminal domain and a disulfide bond. In vitro-mutagenesis of GlEB1 indicated that an intermolecular disulfide bond is made between cysteine #13 of the two monomers. Complementation assay using the BIM1 knockout mutant yeast, the yeast homolog of mammalian EB1, indicated that expression of the C13S mutant GlEB1 protein cannot rescue the mitotic defect of the BIM1 mutant yeast. These results suggest that dimerization of GlEB1 via the 13th cysteine residues plays a role during mitosis in Giardia.  相似文献   

18.
The small GTPase Ran is essential for nucleocytoplasmic transport of macromolecules. In the yeast Saccharomyces cerevisiae, Rna1p functions as a Ran-GTPase activating protein (RanGAP1). Strains carrying the rna1-1 mutation exhibit defects in nuclear transport and, as a consequence, accumulate precursor tRNAs. We have isolated two recessive suppressors of the rna1-1 mutation. Further characterization of one of the suppressor mutations, srn10-1, reveals that the mutation (i) can not bypass the need for Rna1p function and (ii) suppresses the accumulation of unspliced pre-tRNA caused by rna1-1. The SRN10 gene is not essential for cell viability and encodes an acidic protein (pI?=?5.27) of 24.8?kDa. Srn10p is located in the cytoplasm, as determined by indirect immunofluorescence microscopy. Two-hybrid analysis reveals that there is a physical interaction between Srn10p and Rna1p in vivo. Our results identify a protein that interacts with the yeast RanGAP1.  相似文献   

19.
The glycogen synthase kinase-3 homolog, Mck1, has been implicated in many cellular functions, from sporulation to calcium stress response in budding yeast. Here, we report a novel function for Mck1 in the inhibition of Clb2-Cdk1 activity post nuclear division. Clb2-Cdk1, the major mitotic cyclin-Cdk complex in yeast, accumulates before anaphase and must be inhibited in telophase for cells to exit mitosis and enter into the next cell cycle. We show that the mck1Δ mutant is highly sensitive to increased Clb2-Cdk1 activity caused either by overexpression of Clb2 or the Cdk1-activating phosphatase Mih1. Deletion of the Cdk1 inhibitory kinase, SWE1, in combination with a mck1Δ mutant results in a synthetic growth defect, suggesting that Mck1 and Swe1 function in parallel pathways to inhibit Clb2-Cdk1. We find that mck1Δ strains have a delay in mitotic exit as well as elevated levels of Clb2-Cdk1 activity post-nuclear division. Using a co-immunoprecipitation assay, we identify a physical interaction between Mck1 and both Clb2 and Mih1. Finally, we demonstrate that phosphorylation of purified Clb2 by Cdk1 is inhibited by catalytically active Mck1 but not catalytically inactive Mck1 in vitro. We propose that Mck1 inhibits the activity of Clb2-Cdk1 via interaction with Clb2. The mammalian glycogen synthase kinase-3 homolog has been implicated in cyclin inhibition, suggesting a conserved cell cycle function for both yeast and mammalian glycogen synthase kinases.  相似文献   

20.
Accurate chromosome segregation is necessary to ensure genomic integrity. Segregation depends on the proper functioning of the centromere, kinetochore, and mitotic spindle microtubules and is monitored by the spindle assembly checkpoint (SAC). In the fission yeast Schizosaccharomyces pombe, defects in Dis1, a microtubule-associated protein that influences microtubule dynamics, lead to mitotic arrest as a result of an active SAC and consequent failure to grow at low temperature. In a mutant dis1 background (dis1-288), loss of function of Msc1, a fission yeast homolog of the KDM5 family of proteins, suppresses the growth defect and promotes normal mitosis. Genetic analysis implicates a histone deacetylase (HDAC)–linked pathway in suppression because HDAC mutants clr6-1, clr3∆, and sir2∆, though not hos2∆, also promote normal mitosis in the dis1-288 mutant. Suppression of the dis phenotype through loss of msc1 function requires the spindle checkpoint protein Mad2 and is limited by the presence of the heterochromatin-associated HP1 protein homolog Swi6. We speculate that alterations in histone acetylation promote a centromeric chromatin environment that compensates for compromised dis1 function by allowing for successful kinetochore-microtubule interactions that can satisfy the SAC. In cells arrested in mitosis by mutation of dis1, loss of function of epigenetic determinants such as Msc1 or specific HDACs can promote cell survival. Because the KDM5 family of proteins has been implicated in human cancers, an appreciation of the potential role of this family of proteins in chromosome segregation is warranted.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号