首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Functional homology between the 50 S ribosomal protein L3 from Bacillus stearothermophilus and a protein from each of three other species of Bacillaceae (Bacillus licheniformis, Bacillus megaterium, and Bacillus subtilis) is demonstrated by substituting each of the proteins for B. stearothermophilus L3 in active reconstituted ribosomes. The structurally related protein from Escherichia coli, L2, cannot replace B, stearothermophilus L3, nor can any other E. coli protein.  相似文献   

2.
The structural gene for a thermostable α-amylase from Bacillus stearothermophilus was cloned in plasmids pTB90 and pTB53. It was expressed in both B. stearothermophilus and Bacillus subtilis. B. stearothermophilus carrying the recombinant plasmid produced about fivefold more α-amylase (20.9 U/mg of dry cells) than did the wild-type strain of B. stearothermophilus. Some properties of the α-amylases that were purified from the transformants of B. stearothermophilus and B. subtilis were examined. No significant differences were observed among the enzyme properties despite the difference in host cells. It was found that the α-amylase, with a molecular weight of 53,000, retained about 60% of its activity even after treatment at 80°C for 60 min.  相似文献   

3.
The tensile strength of the cell walls ofBacillus megaterium andBacillus stearothermophilus was found to be about 2.4×107 N/m2. The internal pressure and water activity of the cells were 14 atm, 0.99 aw forB. megaterium and 28 atm, 0.98 aw forB. stearothermophilus. The greater strength ofB. stearothermophilus cells, considered as pressure vessels, restricts absorption of water by the protoplasm so that the water content on a dry weight basis is 3.4 g/g forB. megaterium cells in water but only 1.8 g/g forB. stearothermophilus.  相似文献   

4.
The interaction between ribosomes of Bacillus stearothermophilus and the RNA genomes of R17 and Qβ bacteriophage has been studied. Whereas Escherichia coli ribosomes can initiate the synthesis of all three RNA phage-specific proteins in vitro, ribosomes of B. stearothermophilus were previously shown to recognize only the A (or maturation) protein initiation site of f2 or R17 RNA. Under these same conditions, a Qβ region is bound and protected from nuclease digestion. Qβ RNA, however, does not direct the synthesis of any formylmethionyl dipeptide in the presence of B. stearothermophilus ribosomes, nor does the binding of either this Qβ region or the R17 A protein initiation site to these ribosomes show the same fMet-tRNA requirement for recognition of initiator regions as that previously established with E. coli ribosomes. Analysis of a 38-nucleotide sequence in the protected Qβ region reveals no AUG or GUG initiator codon. These observations suggest that messenger RNA may be recognized and bound by B. stearothermophilus ribosomes quite independently of polypeptide chain initiation.Binding experiments using R17 RNA and mixtures of components from B. stearothermophilus and E. coli ribosomes confirm the conclusion drawn by Lodish (1970a) that specificity in the selection of authentic phage initiator regions by the two species resides in the ribosomal subunit(s). However, anomalous attachment of B. stearothermophilus ribosomes to R17 RNA, which is observed upon lowering the incubation temperature of the binding reaction, is clearly a property of the initiation factor fraction. The results are discussed with respect to current ideas on the role of ribosomes and initiation factors in determining the specificity of polypeptide chain initiation.  相似文献   

5.
High-pressure CO2 treatment has been studied as a promising method for inactivating bacterial spores. In the present study, we compared this method with other sterilization techniques, including heat and pressure treatment. Spores of Bacillus coagulans, Bacillus subtilis, Bacillus cereus, Bacillus licheniformis, and Geobacillus stearothermophilus were subjected to CO2 treatment at 30 MPa and 35°C, to high-hydrostatic-pressure treatment at 200 MPa and 65°C, or to heat treatment at 0.1 MPa and 85°C. All of the bacterial spores except the G. stearothermophilus spores were easily inactivated by the heat treatment. The highly heat- and pressure-resistant spores of G. stearothermophilus were not the most resistant to CO2 treatment. We also investigated the influence of temperature on CO2 inactivation of G. stearothermophilus. Treatment with CO2 and 30 MPa of pressure at 95°C for 120 min resulted in 5-log-order spore inactivation, whereas heat treatment at 95°C for 120 min and high-hydrostatic-pressure treatment at 30 MPa and 95°C for 120 min had little effect. The activation energy required for CO2 treatment of G. stearothermophilus spores was lower than the activation energy for heat or pressure treatment. Although heat was not necessary for inactivationby CO2 treatment of G. stearothermophilus spores, CO2 treatment at 95°C was more effective than treatment at 95°C alone.  相似文献   

6.
Two Bacillus stearothermophilus wild-type strains were investigated regarding a common recognition and binding mechanism between the S-layer protein and the underlying cell envelope layer. The S-layer protein from B. stearothermophilus PV72/p6 has a molecular weight of 130,000 and assembles into a hexagonally ordered lattice. The S-layer from B. stearothermophilus ATCC 12980 shows oblique lattice symmetry and is composed of subunits with a molecular weight of 122,000. Immunoblotting, peptide mapping, N-terminal sequencing of the whole S-layer protein from B. stearothermophilus ATCC 12980 and of proteolytic cleavage fragments, and comparison with the S-layer protein from B. stearothermophilus PV72/p6 revealed that the two S-layer proteins have identical N-terminal regions but no other extended structurally homologous domains. In contrast to the heterogeneity observed for the S-layer proteins, the secondary cell wall polymer isolated from peptidoglycan-containing sacculi of the different strains showed identical chemical compositions and comparable molecular weights. The S-layer proteins could bind and recrystallize into the appropriate lattice type on native peptidoglycan-containing sacculi from both organisms but not on those extracted with hydrofluoric acid, leading to peptidoglycan of the A1γ chemotype. Affinity studies showed that only proteolytic cleavage fragments possessing the complete N terminus of the mature S-layer proteins recognized native peptidoglycan-containing sacculi as binding sites or could associate with the isolated secondary cell wall polymer, while proteolytic cleavage fragments missing the N-terminal region remained unbound. From the results obtained in this study, it can be concluded that S-layer proteins from B. stearothermophilus wild-type strains possess an identical N-terminal region which is responsible for anchoring the S-layer subunits to a secondary cell wall polymer of identical chemical composition.  相似文献   

7.
We repor the first data demonstrating the presence of putative conjugative transfer genes on plasmids of the speciesGeobacillus stearothermophilus. Partial sequence analysis of the plasmid pGS18 fromG. stearothermophilus 18 was determined. It contained eleven complete open reading frames. Five of them encoded proteins which are homologous toBacillus megaterium pBM300 Mob/TraA,Lactococcus lactis pMRC01 TrsD and TrsE,Staphylococcus aureus pGO1 TrsG andS. aureus subsp.aureus pUSA03 TraL, the proteins that are associated with conjugative plasmid transfer. Southern hybridizations were performed on two other plasmids isolated fromG. stearothermophilus 3 andG. stearothermophilus 19 strains using the most homologous parts of those five genes as probes. Data from different hybridization patterns show a close homology of putative conjugative transfer genes between pGS18 and pGS3 hypothesizing a similar molecular organization of putative conjugative plasmid transfer region of both plasmids.  相似文献   

8.
《FEBS letters》1987,218(2):215-221
23 S ribosomal ribonucleic acid gene from the extreme thermophile eubacterium Thermus thermophilus HB8 has been cloned in pBR322, and the nucleotide sequence of region D has been determined, which encompasses 873 nucleotides at the 3′-end of the RNA. We compare the primary and secondary structure of this region with the respective part of the 23 S rRNA from Escherichia coli and Bacillus stearothermophilus. A high level of structural conservation can be observed, throughout the RNA domain, albeit the usage of G/C basepairs is substantial even in comparison with another thermophilic eubacterium B. stearothermophilus. It is surprising that, in contrast to the usage of 3′U-G5′, the occurrence of 3′G-U5′ is comparable in E. coli as well as in B. stearothermophilus and T. thermophilus. Furthermore, it is most remarkable that the use of 3′A-U5′ and 3′U-A5′ is, compared to E. coli, only slightly reduced in B. stearothermophilus, but drastically decreased in T. thermophilus.  相似文献   

9.
The alanine dehydrogenase (l-alanine: NAD+ oxidoreductase, deaminating, EC 1.4.1.1) gene of Bacillus stearothermophilus IFO12550 was cloned and expressed in Escherichia coli C600 with a recombinant plasmid, pICD301, which was constructed from pBR322 and the alanine dehydrogenase gene derived from B. stearothermophilus. The enzyme overproduced in the clone was purified about 30 fold to homogeneity by heat treatment and two subsequent steps with a yield of 46%. The enzyme of E. coli-pICD301 was immunochemically identical with that of B. stearothermophilus. The enzyme has a molecular weight of about 240,000 and consists of six subunits identical in molecular weight (40,000). The enzyme is not inactivated by heat treatment: at pH 7.2 and 75°C for 30 min; at 55°C and various pHs between 6.0 and 11.5 for 10 min. The enzymological properties are very similar to those of the mesophilic B. sphaericus enzyme (Ohshima, T. and Soda, K., Eur. J. Biochem., 100, 29–39, 1979) except for thermostability.  相似文献   

10.
Active 50 S ribosomal subunits from Bacillus licheniformis and Bacillus subtilis can be reconstituted in vitro from dissociated RNA and proteins. The reconstituted 50 S sub-units are indistinguishable from native 50 S subunits in sedimentation on sucrose gradients and in protein composition. The procedure used is similar to that developed for reconstitution of Bacillus stearothermophilus 50 S subunits, though the optimal conditions are somewhat different. Hybrid ribosomes can be reconstituted with 23 S RNA and proteins from different sources (B. stearothermophilus and B. licheniformis or B. subtilis). The thermal stability of these ribosomes depends on the source of the proteins, and not on the source of 23 S RNA.  相似文献   

11.
The colony-forming ability and the rate of reproduction of Bacillus stearothermophilus were determined as a function of temperature and pressure. Colonies were formed between 39 and 70°C at atmospheric pressure and between 54 and 67°C at 45 MPa. Colonies did not form at 55.9 MPa. The rate of reproduction in broth cultures decreased with increasing pressure at all temperatures. The rate of reproduction diminished rapidly with pressure above 10.4 MPa. Therefore, increased hydrostatic pressure was not sufficient to enable B. stearothermophilus to function beyond the temperature limiting growth and reproduction at atmospheric pressure, and B. stearothermophilus should grow in naturally or artificially warmed regions of the deep sea, where the pressure is less than approximately 50 MPa, although growth rates would be low above 10 MPa.  相似文献   

12.
Genes responsible for maltose utilization from Bacillus stearothermophilus ATCC7953 were cloned in the plasmid vector pBR325 and functionally expressed in Escherichia coli. The 4.2 kb Bacillus DNA insert in clone pAM1750 suppressed the growth defects on maltose caused by mutations in E. coli maltose transport genes (malE, malK or complete malB deletion) but not mutations in genes affecting intracellular maltose metabolism (malA region). Transport studies in E. coli and B. stearothermophilus suggested that pAM1750 codes for a high affinity transport system, probably one of two maltose uptake systems found in B. stearothermophilus ATCC7953. Nucleotide sequence analysis of a 3.6 kb fragment of pAM 1750 revealed three open reading frames (ORFs). One of the ORFs, malA, encoded a putative hydrophobic protein with 12 potential transmembrane segments. MalA showed amino acid sequence similarity to proteins in the superfamily containing LacY lactose permease and also some similarity to MaIG protein, a member of a binding protein-dependent transport system in E. coli. The products of two other ORFs were not hydrophobic, did not show similarity to other known sequences and were found not to be essential for maltose utilization in transport-defective E. coli mutants. Hence MalA protein was the only protein necessary for maltose transport, but despite giving a detectable but low level of transport function in E. coli, the protein was very poorly expressed and could not be identified.  相似文献   

13.
The 5S rRNAs of Escherichia coli, Bacillus stearothermophilus, and B. subtilis were isolated and their molecular conformation examined. All three 5S rRNAs were similar with regard to nucleotide chain length, base composition and general configuration. Several major differences were apparent between the secondary and tertiary conformations of the 5S rRNA of E. coli and the genus Bacillus. Only minor differences were noted between those from the two Bacillus species. Each 5S rRNA species had a different 5′-terminal nucleotide: E. coli-U; B. stearothermophilus-C; B. subtilis-G.  相似文献   

14.
The gene coding for the thermostable d-hydantoinase from the thermophilic bacterium Bacillus stearothermophilus SD1 was cloned and its nucleotide sequence was completely determined. The d-hydantoinase protein showed considerable amino acid sequence homology (20–28%) with other hydantoinases and functionally related allantoinases and dihydroorotases. Strikingly the sequence of the enzyme from B. stearothermophilus SD1 exhibited greater than 89% identity with hydantoinases from thermophilic bacteria. Despite the extremely high amino acid homology among the hydantoinases from thermophiles, the C-terminal regions of the enzymes were completely different in both sequence and predicted secondary structure, implying that the C-terminal region plays an important role in determining the biochemical properties of the enzymes. Alignment of the sequence of the d-hydantoinase from B. stearothermophilus SD1 with those of other functionally related enzymes revealed four conserved regions, and five histidines and an acidic residue were found to be conserved, suggesting a close evolutionary relationship between all these enzymes.  相似文献   

15.
A DNA recombination-deficient Rec mutant of Bacillus stearothermophilus was obtained via mutagenesis from a parental strain B. stearothermophilus MO-3 deficient in neutral protease npr. The Rec status was confirmed by the fact that no recombinational revertant appeared when a hybrid plasmid pNP13 carrying npr was used. The performance of the temperature-dependent integrative and excisable plasmid pTRA117 was further studied in this Rec host. Its integration into host chromosome was found to be dependent on Rec, although flanking-homology integration had been disproved. Consequently, the excision product of pTRA117, a thermostable plasmid pTRZ117, did not emerge in the Rec host.  相似文献   

16.
Bacterial metabolites with communicative functions could provide protection against stress conditions to members of the same species. Yet, information remains limited about protection provided by metabolites in Bacillus cereus and inter-species. This study investigated the effect of extracellular compounds derived from heat shocked (HS) and non-HS cultures of B. cereus and Geobacillus stearothermophilus on the thermotolerance of non-HS vegetative and sporulating B. cereus. Cultures of B. cereus and G. stearothermophilus were subjected to HS (42 or 65 °C respectively for 30 min) or non-HS treatments. Cells and supernatants were separated, mixed in a combined array, and then exposed to 50 °C for 60 min and viable cells determined. For spores, D values (85 and 95 °C) were evaluated after 120 h. In most cases, supernatants from HS B. cereus cultures added to non-HS B. cereus cells caused their thermotolerance to increase (D 50 12.2–51.9) when compared to supernatants from non-HS cultures (D 50 7.4–21.7). While the addition of supernatants from HS and non-HS G. stearothermophilus cultures caused the thermotolerance of non-HS cells from B. cereus to decrease initially (D 50 3.7–7.1), a subsequent increase was detected in most cases (D 50 18–97.7). In most cases, supernatants from sporulating G. stearothermophilus added to sporulating cells of B. cereus caused the thermotolerance of B. cereus 4810 spores to decline, whereas that of B. cereus 14579 increased. This study clearly shows that metabolites in supernatants from either the same or different species (such as G. stearothermophilus) influence the thermotolerance of B. cereus.  相似文献   

17.
Two acidic proteins from the 50 S subunit of Bacillus stearothermophilus ribosomes, namely B-L13 (homologous to Escherichia coli protein L7L12) and B-L8, form a complex. Radioactive B-L13, added to ribosomes before dissociation, does not appear in the complex after electrophoresis, so the (B-L13 · B-L8) complex must exist in the ribosome before dissociation. Digestion of B. stearothermophilus ribosomes with polyacrylamide-bound trypsin causes the appearance of new B-L8 and B-L13 spots on two-dimensional polyacrylamide gel electrophoresis, in a pattern which suggests that single molecules of B-L13 are being sequentially cleaved from a four-to-one complex of B-L13 and B-L8.  相似文献   

18.
The recognition sequence and cleavage positions of a new restriction endonuclease BtrI isolated from Bacillus stearothermophilus SE-U62 have been determined. BtrI belongs to a rare type IIQ of restriction endonucleases, which recognise non-palindromic nucleotide sequences and cleave DNA symmetrically within them.  相似文献   

19.
Bacterial elongation factor Tu (EF-Tu) is a model monomeric G protein composed of three covalently linked domains. Previously, we evaluated the contributions of individual domains to the thermostability of EF-Tu from the thermophilic bacterium Bacillus stearothermophilus. We showed that domain 1 (G-domain) sets up the basal level of thermostability for the whole protein. Here we chose to locate the thermostability determinants distinguishing the thermophilic domain 1 from a mesophilic domain 1. By an approach of systematically swapping protein regions differing between G-domains from mesophilic Bacillus subtilis and thermophilic B. stearothermophilus, we demonstrate that a small portion of the protein, the N-terminal 12 amino acid residues, plays a key role in the thermostability of this domain. We suggest that the thermostabilizing effect of the N-terminal region could be mediated by stabilizing the functionally important effector region. Finally, we demonstrate that the effect of the N-terminal region is significant also for the thermostability of the full-length EF-Tu.  相似文献   

20.
Spores of Bacillus stearothermophilus germinated in the presence of sodium dipicolinate (DPA) but did not elongate after the emergence stage of outgrowth. Vegetative growth also was inhibited by Na2DPA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号