首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Antifreeze activity increases in winter rye ( Secale cereale L.) during cold acclimation as the plants accumulate antifreeze proteins (AFPs) that are similar to glucanases, chitinases and thaumatin-like proteins (TLPs) in the leaf apoplast. In the present work, experiments were conducted to assess the role of drought and abscisic acid (ABA) in the regulation of antifreeze activity and accumulation of AFPs. Antifreeze activity was detected as early as 24 h of drought treatment at 20°C and increased as the level of apoplastic proteins increased. Apoplastic proteins accumulated rapidly under water stress and reached a level within 8 days that was equivalent to the level of apoplastic proteins accumulated when plants were acclimated to cold temperature for 7 weeks. These drought-induced apoplastic proteins had molecular masses ranging from 11 to 35 kDa and were identified as two glucanases, two chitinases, and two TLPs, by using antisera raised against cold-induced rye glucanase, chitinase, and TLP, respectively. Apoplastic extracts obtained from plants treated with ABA lacked the ability to modify the growth of ice crystals, even though ABA induced the accumulation of apoplastic proteins within 4 days to a level similar to that obtained when plants were either drought-stressed for 8 days or cold-acclimated for 7 weeks. These ABA-induced apoplastic proteins were identified immunologically as two glucanases and two TLPs. Moreover, the ABA biosynthesis inhibitor fluridone did not prevent the accumulation of AFPs in the leaves of cold-acclimated rye plants. Our results show that cold acclimation and drought both induce antifreeze activity in winter rye plants and that the pathway regulating AFP production is independent of ABA.  相似文献   

2.
Introduction  – Jasmonic acid (JA), abscisic acid (ABA) and indole‐3‐acetic acid (IAA) are important plant hormones. Plant hormones are difficult to analyse because they occur in small concentrations and other substances in the plant interfere with their detection. Objective  – To develop a new, inexpensive procedure for the rapid extraction and purification of IAA, ABA and JA from various plant species. Methodology  – Samples were prepared by extraction of plant tissues with methanol and ethyl acetate. Then the extracts were further purified and enriched with C18 cartridges. The final extracts were derivatised with diazomethane and then measured by GC‐MS. The results of the new methodology were compared with those of the Creelman and Mullet procedure. Results  – Sequential elution of the assimilates from the C18 cartridges revealed that IAA and ABA eluted in 40% methanol, while JA subsequently eluted in 60% methanol. The new plant hormone extraction and purification procedure produced results that were comparable to those obtained with the Creelman and Mullet's procedure. This new procedure requires only 0.5 g leaf samples to quantify these compounds with high reliability and can simultaneously determine the concentrations of the three plant hormones. Conclusion  – A simple, inexpensive method was developed for determining endogenous IAA, ABA and JA concentrations in plant tissue. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

3.
Both abscisic acid (ABA) and jasmonates are known to promote leaf senescence. Since ABA and jasmonates have both chemical and physiological similarities, we are interested to know whether senescence of detached rice leaves induced by methyl jasmonate (MJ) is mediated through an increase in endogenous ABA levels. In darkness, the endogenous level of ABA in detached rice leaves remained unchanged in the first day of incubation in water and increased about 5 times its initial value in the second day. However, the pattern of senescence, as judged by protein loss, was rapid during the first day. MJ significantly promoted senescence of detached rice leaves. Contrary to our expectation, endogenous ABA levels decreased in MJ-treated detached rice leaves. Similar to the effect of MJ, endogenous ABA levels decreased in detached rice leaves which were induced to senesce by treatment with NH4Cl. These results suggest that endogenous ABA levels are not linked to MJ-induced senescence of detached rice leaves.  相似文献   

4.
Although germin-like proteins (GLPs) have been demonstrated to participate in plant biotic stress responses, their specific functions in rice disease resistance are still largely unknown. Here, we report the identification and characterization of OsGLP3-7, a member of the GLP family in rice. Expression of OsGLP3-7 was significantly induced by pathogen infection, jasmonic acid (JA) treatment, and hydrogen peroxide (H2O2) treatment. OsGLP3-7 was highly expressed in leaves and sublocalized in the cytoplasm. Overexpression of OsGLP3-7 increased plant resistance to leaf blast, panicle blast, and bacterial blight, whereas disease resistance in OsGLP3-7 RNAi silenced plants was remarkably compromised, suggesting this gene is a positive regulator of disease resistance in rice. Further analysis showed that OsGLP3-7 has superoxide dismutase (SOD) activity and can influence the accumulation of H2O2 in transgenic plants. Many genes involved in JA and phytoalexin biosynthesis were strongly induced, accompanied with elevated levels of JA and phytoalexins in OsGLP3-7-overexpressing plants, while expression of these genes was significantly suppressed and the levels of JA and phytoalexins were reduced in OsGLP3-7 RNAi plants compared with control plants, both before and after pathogen inoculation. Moreover, we showed that OsGLP3-7-dependent phytoalexin accumulation may, at least partially, be attributed to the elevated JA levels observed after pathogen infection. Taken together, our results indicate that OsGLP3-7 positively regulates rice disease resistance by activating JA and phytoalexin metabolic pathways, thus providing novel insights into the disease resistance mechanisms conferred by GLPs in rice.  相似文献   

5.
6.
7.
Giant-celled Characeae (Chara australis Brown), grown for 4 months on 12/12 hr day/night cycle and summer/autumn temperatures, exhibited distinct concentration maxima in auxin (indole-3-acetic acid; IAA), melatonin and serotonin about 4 hr after subjective daybreak. These concentration peaks persisted after 3 day pretreatment in continuous darkness: confirming a circadian rhythm, rather than a response to “light on.” The plants pretreated for 3 d in continuous light exhibited several large IAA concentration maxima throughout the 24 hr. The melatonin and serotonin concentrations decreased and were less synchronized with IAA. Chara plants grown on 9/15 hr day/night cycle for 4 months and winter/spring temperatures contained much smaller concentrations of IAA, melatonin and serotonin. The IAA concentration maxima were observed in subjective dark phase. Serotonin concentration peaks were weakly correlated with those of IAA. Melatonin concentration was low and mostly independent of circadian cycle. The “dark” IAA concentration peaks persisted in plants treated for 3 d in the dark. The plants pretreated for 3 d in the light again developed more IAA concentration peaks. In this case the concentration maxima in melatonin and serotonin became more synchronous with those in IAA. The abscisic acid (ABA) and jasmonic acid (JA) concentrations were also measured in plants on winter regime. The ABA concentration did not exhibit circadian pattern, while JA concentration peaks were out of phase with those of IAA. The data are discussed in terms of crosstalk between metabolic pathways.  相似文献   

8.
Field and lysimeter experiments were conducted in 2002 to investigate the effects of an antigibberellin growth regulator (Moddus, active ingredient trinexapac‐ethyl, Syngenta Crop Protection UK Ltd, Whittlesford, Cambridge, UK) and an auxin‐stimulating (Route, active ingredient zinc ammonium acetate, De Sangosse Ltd, Swaffham Bulbeck, Cambridge, UK) growth promoter on root growth, soil water extraction and the drought response of spring barley. The effects on root growth and distribution were investigated in the field. The effects on the drought response were studied in 1.2‐m‐deep lysimeters packed with a loamy sand subsoil and sandy loam topsoil. Lysimeters were located under a fixed rain shelter, and drought was imposed by withholding irrigation. In both field and lysimeter experiments, growth regulator/promoters were applied to cv. Optic at early tillering according to the manufacturers’ recommendations. After withholding irrigation from lysimeters at Zadoks growth stage (GS) 21 (37 days after sowing), 50% of the profile available water had been depleted by flag leaf emergence (GS 37/39; 62 days after sowing). Drought significantly reduced stem biomass at ear emergence (GS 59; 78 days after sowing) but not leaf or ear dry weight; this was before there was any significant reduction in leaf water potential or stomatal conductance to water vapour. The reduction in stem biomass may reflect a change in partitioning between shoot and root in response to soil drying. When averaged over growth regulator/promoter treatments, drought reduced grain yield by approximately 1 t ha?1. This was associated with a reduction in both ears per m2 and grains per ear. The mean grain weight was not reduced by drought, in spite of significant reductions in stomatal conductance and canopy lifespan post‐anthesis. Route, and to a lesser extent Moddus, significantly increased abscisic acid accumulation in the stem base of droughted plants, and there was some indication of a possible delay in stomatal closure in Route‐treated plants as the soil moisture deficit developed. However, there was no significant effect on the amount of soil water extracted or grain yield under drought. Similarly, in field experiments, neither Route nor Moddus significantly altered total root length, biomass or distribution. There is little evidence from these experiments or in the literature to support the use of antigibberellin or auxin‐simulating growth regulator/promoters to modify root growth and drought avoidance of spring barley.  相似文献   

9.
cDNA macroarray has become a useful tool to analyze expression profiles and compare the similarities and differences of various expression patterns. We have prepared a cDNA macroarray containing 190 maize expressed sequence tags (ESTs) specifically induced by water stress to analyze the expression profiles of maize seedlings under abscisic acid (ABA) treatment, high-salinity and cold stress conditions. The results indicated that 48 ESTs in leaves and 111 ESTs in roots were significantly up-regulated by ABA treatment, 36 ESTs in leaves and 41 ESTs in roots by high-salinity stress, 14 ESTs in leaves and 18 ESTs in roots by cold induction, whereas 22 ESTs were induced under all 3 stresses. Results from the hierarchical cluster analysis suggest that the leaves and roots of maize seedlings had different expression profiles after these stresses. The overlap analysis of different stress-induced ESTs indicated that there is more crosstalk between water stress and ABA and high-salinity stress than between water stress and cold stress. It will be helpful to study the precise function of the corresponding overlapping-induced genes for understanding the relationship and crosstalk between different stress signal pathways.  相似文献   

10.
Pib启动子中茉莉酸和乙烯响应元件的转基因分析   总被引:1,自引:1,他引:1  
水稻Pib基因的表达受茉莉酸、乙烯等激素诱导, 为了确定该基因启动子响应茉莉酸和乙烯诱导的必需区域, 进一步阐明茉莉酸和乙烯响应分子元件, 文章用PCR制备了Pib全长启动子-3 572~2 bp及3个5′端有不同长度缺失的Pib启动子片段-2 692~2 bp、-1 335~2 bp、-761~2 bp。4个不同长度Pib启动子分别置换掉双元质粒中gus基因上游的35S构建为重组质粒, 经农杆菌介导转入水稻获得转基因植株。转基因水稻中gus活性的蛋白质水平和mRNA水平的定性和定量分析结果表明, 全长Pib启动子(-3 572~2 bp, pNAR901)启动活性最强, 茉莉酸或乙烯诱导6 h后, 其驱动gus基因在转基因植株各部组织中的表达量明显上升。而-3 572~-2 692 bp区段序列缺失后不但Pib启动子启动活性显著降低而且也丧失了对茉莉酸和乙烯的诱导活性。pNAR902(-2 692~2 bp),pNAR903(-1 335~2 bp)和pNAR904(-761~2 bp)中的Pib启动子序列的缺失长度相差达2倍和3倍以上, 但其对茉莉酸和乙烯的诱导响应没有区别。这些结果显示3个Pib启动子缺失体构建中, 其共同缺失序列即-3 572~-2 692 bp区域是Pib启动子茉莉酸和乙烯诱导响应的必需区域。软件检索证实, Pib启动子序列中只在上述共同缺失区段之内的-2 722 bp处有一个GCCGCC基序。文章报道的转基因实验表明GCCGCC基序可能是Pib基因中有关茉莉酸和乙烯诱导响应的顺式分子元件。  相似文献   

11.
12.
Reactive oxygen species (ROS) play an important role in NaCl stress. Plants tolerant to NaCl stress may evolve certain strategies to remove these ROS, thus reducing their toxic effects. Therefore, the expression patterns of the gene family encoding glutathione reductase (GR, EC 1.6.4.2) were analyzed in roots of etiolated rice (Oryza sativa L.) seedlings in response to NaCl stress. Semi-quantitative RT-PCR was applied to quantify the mRNA levels for one cytosolic (OsGR2) and two chloroplastic (OsGR1 and OsGR3) isoforms of glutathione reductase identified in the rice genome. The expression of OsGR2 and OsGR3 but not OsGR1 was increased in rice roots treated with 150 mM NaCl. The Rab16A is an abscisic acid (ABA)-responsive rice gene. Increasing concentrations of ABA, from 1 to 12 μM, progressively increased the expression of OsRab16A in rice roots. In the present study, the ABA level was judged by the expression of OsRab16A in rice roots. Treatment with 150 mM NaCl induced the expression of OsRab16A, and the expression increased with increasing concentrations of ABA, which suggests that ABA may be involved in this response in rice roots. In fact, exogenous application of ABA enhanced the expression of OsGR2 and OsGR3 in rice roots. On inhibiting ABA accumulation with sodium tungstate (Tu), an inhibitor of ABA biosynthesis, the expression of OsGR2 and OsGR3 was still induced by NaCl; therefore, NaCl-triggered expression of OsGR2 and OsGR3 in rice roots is not mediated by accumulation of ABA. However, NaCl treatment could induce H2O2 production in rice roots, and H2O2 treatment resulted in enhanced OsGR2 and OsGR3 induction. On inhibiting the NaCl-induced accumulation of H2O2 with diphenylene iodonium, the expression of OsGR2 and OsGR3 was also suppressed. Moreover, the increase in H2O2 level was prior to the induction of OsGR2 and OsGR3 in NaCl-treated rice roots. Thus, H2O2, but not ABA, is involved in regulation of OsGR2 and OsGR3 expression in NaCl-treated rice roots.  相似文献   

13.
14.
Expression of AtPHO1;H10, a member of the Arabidopsis (Arabidopsis thaliana) PHO1 gene family, is strongly induced following numerous abiotic and biotic stresses, including wounding, dehydration, cold, salt, and pathogen attack. AtPHO1;H10 expression by wounding was localized to the cells in the close vicinity of the wound site. AtPHO1;H10 expression was increased by application of the jasmonic acid (JA) precursor 12-oxo-phytodienoic acid (OPDA), but not by JA or coronatine. Surprisingly, induction of AtPHO1;H10 by OPDA was dependent on the presence of CORONATINE INSENSITIVE1 (COI1). The induction of AtPHO1;H10 expression by wounding and dehydration was dependent on COI1 and was comparable in both the wild type and the OPDA reductase 3-deficient (opr3) mutant. In contrast, induction of AtPHO1;H10 expression by exogenous abscisic acid (ABA) was independent of the presence of either OPDA or COI1, but was strongly decreased in the ABA-insensitive mutant abi1-1. The involvement of the ABA pathway in regulating AtPHO1;H10 was distinct between wounding and dehydration, with induction of AtPHO1;H10 by wounding being comparable to wild type in the ABA-deficient mutant aba1-3 and abi1-1, whereas a strong reduction in AtPHO1;H10 expression occurred in aba1-3 and abi1-1 following dehydration. Together, these results reveal that OPDA can modulate gene expression via COI1 in a manner distinct from JA, and independently from ABA. Furthermore, the implication of the ABA pathway in coregulating AtPHO1;H10 expression is dependent on the abiotic stress applied, being weak under wounding but strong upon dehydration.  相似文献   

15.

Background

Both coxsackievirus B3 (CVB3) and influenza A virus (IAV; H1N1) produce sexually dimorphic infections in C57BL/6 mice. Gonadal steroids can modulate sex differences in response to both viruses. Here, the effect of sex chromosomal complement in response to viral infection was evaluated using four core genotypes (FCG) mice, where the Sry gene is deleted from the Y chromosome, and in some mice is inserted into an autosomal chromosome. This results in four genotypes: XX or XY gonadal females (XXF and XYF), and XX or XY gonadal males (XXM and XYM). The FCG model permits evaluation of the impact of the sex chromosome complement independent of the gonadal phenotype.

Methods

Wild-type (WT) male and female C57BL/6 mice were assigned to remain intact or be gonadectomized (Gdx) and all FCG mice on a C57BL/6 background were Gdx. Mice were infected with either CVB3 or mouse-adapted IAV, A/Puerto Rico/8/1934 (PR8), and monitored for changes in immunity, virus titers, morbidity, or mortality.

Results

In CVB3 infection, mortality was increased in WT males compared to females and males developed more severe cardiac inflammation. Gonadectomy suppressed male, but increased female, susceptibility to CVB3. Infection with IAV resulted in greater morbidity and mortality in WT females compared with males and this sex difference was significantly reduced by gonadectomy of male and female mice. In Gdx FCG mice infected with CVB3, XY mice were less susceptible than XX mice. Protection correlated with increased CD4+ forkhead box P3 (FoxP3)+ T regulatory (Treg) cell activation in these animals. Neither CD4+ interferon (IFN)γ (T helper 1 (Th1)) nor CD4+ interleukin (IL)-4+ (Th2) responses differed among the FCG mice during CVB3 infection. Infection of Gdx FCG mice revealed no effect of sex chromosome complement on morbidity or mortality following IAV infection.

Conclusions

These studies indicate that sex chromosome complement can influence pathogenicity of some, but not all, viruses.  相似文献   

16.
We compared tomato defense responses to Phytophthora infestans in highly compatible and partially compatible interactions. The highly compatible phenotype was achieved with a tomato-specialized isolate of P. infestans, whereas the partially compatible phenotype was achieved with a nonspecialized isolate. As expected, there was induction of the hypersensitive response (HR) earlier during the partially compatible interaction. However, contrary to our expectation, pathogenesis-related (PR) gene expression was not stimulated sooner in the partially compatible interaction. While the level of PR gene expression was quite similar in the two interactions, the LeDES gene (which encodes an enzyme necessary for the production of divinyl ethers) was expressed at a much higher level in the partially compatible interaction at 48 h after inoculation. Host reaction to the different pathogen genotypes was not altered (compared with wild type) in mutant tomatoes that were ethylene-insensitive (Never-ripe) or those with reduced ability to accumulate jasmonic acid (def-1). Similarly, host reaction was not altered in NahG transgenic tomatoes unable to accumulate salicylic acid. These combined data indicate that partial resistance in tomato to P. infestans is independent of ethylene, jasmonic acid, and salicylic acid signaling pathways.  相似文献   

17.
An AGAMOUS/SHATTERPROOF homologue (Vvmads1) was isolated from grapevine by differential display between berry and leaf mRNA. The predicted protein sequence of the full-length clone shows a high degree of homology to PLENA (77% identity) and to SHP1 and SHP2 (75% and 74% identity respectively), and is grouped with AGAMOUS/PLENA homologues when the conserved MADS and K domains are compared. Vvmads1 is expressed only in the later stages of flower development and throughout berry development, although expression is reduced after ripening commenced. When Vvmads1 was over-expressed in tobacco, the resulting plants display altered morphologies in the outer two floral whorls. In the most extreme cases, the inner whorls were surrounded by a carpelloid structure created by the modified sepals. Within these sepals were petals which had been split into sections and which were attached at the base of the flower by structures with the appearance of filaments. The results of this study suggest that Vvmads1 has a regulatory role in flower development before fertilisation and a role in fruit development after fertilisation.  相似文献   

18.
19.
Stomatal openings can be stimulated by light through two signalling pathways. The first pathway is blue light specific and involves phototropins, while the second pathway mediates a response to photosynthetically active radiation (PAR). This second pathway was studied with the use of albino Vicia faba plants and variegated leaves of Chlorophytum comosum. Treatment of V. faba with norflurazon (Nf) inhibits the synthesis of carotenoids and leads to albino leaves with guard cells that lack functional green chloroplasts. Guard cells in albino leaf patches of C. comosum, however, do contain photosynthetically active chloroplasts. Stomata in albino leaf patches of both plants did not respond to red light, although blue light could still induce stomatal opening. This shows that the response to PAR is not functioning in albino leaf patches, even though guard cells of C. comosum harbour chloroplasts. Stomata of Nf-treated plants still responded to CO2 and abscisic acid (ABA). The size of Nf-treated guard cells was increased, but impalement studies with double-barrelled microelectrodes revealed no changes in ion-transport properties at the plasma membrane of guard cells. Blue light could hyperpolarize albino guard cells by triggering outward currents with peak values of 37 pA in albino plants and 51 pA in green control cells. Because of the inhibition of carotenoid biosynthesis, Nf-treated V. faba plants contained only 4% of the ABA content found in green control plants. The ABA dose dependence of anion channel activation in guard cells was shifted in these plants, causing a reduced response to 10 microM ABA. These data show that despite the dramatic changes in physiology caused by Nf, the gross responsiveness of guard cells to blue light, CO2 and ABA remains unaltered. Stomata in albino leaf patches, however, do not respond to PAR, but require photosynthetically active mesophyll cells for this response.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号