首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The ribosomal protein genes are present in two to four copies per haploid genome of Xenopus laevis. Using cloned complementary DNA probes, we have isolated, from a genomic library of X. laevis, several clones containing genes for two different ribosomal proteins (L1 and L14). These genes contain intervening sequences. In the case of the L1 gene, the exons are 100 to 200 base-pairs long and the introns, on average, 400 base-pairs. Along the genomic fragments, two different classes of repetitive DNA are present: highly and middle repetitive DNA. Both are evolutionarily unstable as shown by hybridization to Xenopus tropicalis DNA. Several introns of the gene coding for protein L1 contain middle repetitive sequences. Hybridization and hybrid-released translation experiments have shown that sequences inside the two genes hybridize to several poly(A) messenger RNAs. Some of the products encoded by these mRNA have electrophoretic properties of ribosomal proteins.  相似文献   

2.
3.
5 S DNAs of Xenopus laevis and Xenopus mulleri: evolution of a gene family   总被引:15,自引:0,他引:15  
The 5 S DNA which contains the genes for 5 S RNA has been purified from the frog Xenopus mulleri and compared with the 5 S DNA of Xenopus laevis. Both DNAs contain highly repetitive sequences in which the gene sequence that codes for 5 S RNA alternates with a spacer sequence. The 5 S DNAs of X. laevis and X. mulleri comprise about 0.7% of the total DNA or about 24,000 and 9000 repeating sequences, respectively. The average repeat length within native X. laevis and X. mulleri 5 S DNA is about 0.5 to 0.6 and 1.2 to 1.5 × 106 daltons, respectively, each repeat of which contains a single gene sequence for 5 S RNA (0.08 × 106 daltons). The two DNAs differ in the average length of their spacers and no cross homology can be detected by heterologous hybridization of the two DNAs, except within the 5 S RNA gene regions. Despite their differences, the spacer sequences of X. laevis and X. mulleri 5 S DNA resemble each other enough to conclude that they have diverged from a common ancestral sequence.The multiple repeating sequences of 5 S DNA in each species have evolved as a family of similar, but not identical sequences. It is known that 5 S DNA is located at the ends (telomeres) of the long arms of most, if not all, X. laevis chromosomes. It is proposed that multiple gene sequences located on the ends of many chromosomes can evolve together as a family if there is extensive and unequal exchange of DNA sequences between homologous and non-homologous chromosomes at their ends.  相似文献   

4.
The multigene family encoding the small subunit polypeptides of ribulose-1,5-bisphosphate carboxylase/oxygenase in the crucifer Arabidopsis thaliana has been isolated and the organization and structure of the individual members determined. The family consists of four genes which have been divided into two subfamilies on the basis of linkage and DNA and amino acid sequence similarities. Three of the genes, designated ats1B, ats2B, and ats3B, reside in tandem on an 8 kb stretch of the chromosome. These genes share greater than 95% similarity in DNA sequence and encode polypeptides identical in length and 96.7% similar in amino acid sequence. The fourth gene, ats1A, is at least 10 kb removed from, or completely unlinked to the B subfamily. The B subfamily genes are more similar to each other than to ats1A in nucleotide and amino acid sequence. All four genes are interupted by two introns whose placement within the coding region of the genes is conserved. The introns of the B subfamily genes are similar in length and nucleotide sequence, but show no similarity to the introns of ats1A. Comparison of the DNA sequences within the immediate 5 and 3 flanking sequences among the genes revealed only limited regions of homology. S1 analysis shows that all four genes are expressed.  相似文献   

5.
The popular view that plant mitochondrial genome evolves slowly in sequence has been recently challenged by the extraordinarily high substitution rates of mtDNA documented mainly from several angiosperm genera, but high substitution rate acceleration accompanied with great length variation has been very rarely reported in plant mitochondrial genes. Here, we studied evolution of the mitochondrial rps3 gene that encodes the ribosomal small subunit protein 3 and found a dramatically high variation in both length and sequence of an exon region of it in Conifer II. A sequence comparison between cDNA and genomic DNA showed that there are no RNA editing sites in the Conifer II rps3 gene. Southern blotting analyses of the total DNA and mtDNA, together with the real-time PCR analysis, showed that rps3 exists as a single mitochondrial locus in gymnosperms. It is very likely that the Conifer II rps3 gene has experienced retroprocessing, i.e., the re-integration of its cDNA into the mitochondrial genome, followed by an evolutionary acceleration due to the intron loss. In addition, the phylogenetic analysis of rps3 supports the sister relationship between conifers and Gnetales. In particular, the monophyly of conifer II is strongly supported by the shared loss of two rps3 introns. Our results also indicate that the mitochondrial gene tree would be affected in topology when the “edited” paralogs are analyzed together with their genomic sequences.  相似文献   

6.
7.
8.
The nucleotide sequences of the entire gene family, comprising six genes, that encodes the Rubisco small subunit (rbcS) multigene family in Mesembryanthemum crystallinum (common ice plant), were determined. Five of the genes are arranged in a tandem array spanning 20 kb, while the sixth gene is not closely linked to this array. The mature small subunit coding regions are highly conserved and encode four distinct polypeptides of equal lengths with up to five amino acid differences distinguishing individual genes. The transit peptide coding regions are more divergent in both amino acid sequence and length, encoding five distinct peptide sequences that range from 55 to 61 amino acids in length. Each of the genes has two introns located at conserved sites within the mature peptide-coding regions. The first introns are diverse in sequence and length ranging from 122 by to 1092 bp. Five of the six second introns are highly conserved in sequence and length. Two genes, rbcS-4 and rbcS-5, are identical at the nucleotide level starting from 121 by upstream of the ATG initiation codon to 9 by downstream of the stop codon including the sequences of both introns, indicating recent gene duplication and/or gene conversion. Functionally important regulatory elements identified in rbcS promoters of other species are absent from the upstream regions of all but one of the ice plant rbcS genes. Relative expression levels were determined for the rbcS genes and indicate that they are differentially expressed in leaves.  相似文献   

9.
The genome of Xenopus laevis codes for two genes of peroxiredoxin 6, i.e., xen1 (Acc. no. EMBL Data Bank-BCO54278) and xen2 (Acc. no. EMBL Data Bank-BCO54309). Both the genes were cloned and expressed in Escherichia coli. The amino acid sequences of Xen1 and Xen2 enzymes are identical by 95%, and they possess the same peroxidase activity as well as similar optimums of temperature, pH, and thermostability. The genes of peroxiredoxin 6 of Xenopus laevis considerably differ in the period of expression during ontogenesis; i.e., xen2 is expressed during every stage of development, somewhat more intensively after stages 0–5; the expression of xen1 is initiated later, i.e., during the developmental stages of 47–48 h. Expression of xen2 increases after the incubation of embryos in a medium with hydrogen peroxide. Comparison of the amino acid sequences of Xen1 and Xen2 proteins shows that only Xen2 can possess phospholipase activity because its amino acid sequence contain residues of the phospholipase A2 active center: Ser31, His25, and Asp139.  相似文献   

10.
The sequence of the apocytochrome b (cob) gene of Neurospora crassa has been determined. The structural gene is interrupted by two intervening sequences of approximately 1260 bp each. The polypeptide encoded by the exons shows extensive homology with the cob proteins of Aspergillus nidulans and Saccharomyces cerevisiae (79% and 60%, respectively). The two introns are, however, located at sites different from those of introns in the cob genes of A. nidulans and S. cerevisiae (which contain highly homologous introns at the same site within the gene). The introns share several short regions of sequence homology (10-12 bp long) with each other and with other fungal mitochondrial introns. Moreover, the second intron contains a 50 nucleotide long sequence that is highly homologous with sequences within every ribosomal intron of fungal mitochondria sequenced to date. The conserved sequences may allow the formation of a core secondary structure, which is nearly identical in many mitochondrial introns. The conserved secondary structure may be required for intron splicing. The second intron contains an open reading frame, continuous with the preceding exon, of approximately 290 codons. Two stretches of 10 amino acid residues, conserved in many introns, are present in the open reading frame.  相似文献   

11.
We present phylogenetic evidence that a group I intron in an angiosperm mitochondrial gene arose recently by horizontal transfer from a fungal donor species. A 1,716-bp fragment of the mitochondrial coxI gene from the angiosperm Peperomia polybotrya was amplified via the polymerase chain reaction and sequenced. Comparison to other coxI genes revealed a 966-bp group I intron, which, based on homology with the related yeast coxI intron aI4, potentially encodes a 279-amino-acid site-specific DNA endonuclease. This intron, which is believed to function as a ribozyme during its own splicing, is not present in any of 19 coxI genes examined from other diverse vascular plant species. Phylogenetic analysis of intron origin was carried out using three different tree-generating algorithms, and on a variety of nucleotide and amino acid data sets from the intron and its flanking exon sequences. These analyses show that the Peperomia coxI gene intron and exon sequences are of fundamentally different evolutionary origin. The Peperomia intron is more closely related to several fungal mitochondrial introns, two of which are located at identical positions in coxI, than to identically located coxI introns from the land plant Marchantia and the green alga Prototheca. Conversely, the exon sequence of this gene is, as expected, most closely related to other angiosperm coxI genes. These results, together with evidence suggestive of co-conversion of exonic markers immediately flanking the intron insertion site, lead us to conclude that the Peperomia coxI intron probably arose by horizontal transfer from a fungal donor, using the double-strand-break repair pathway. The donor species may have been one of the symbiotic mycorrhizal fungi that live in close obligate association with most plants. Correspondence to: J.C. Vaughn  相似文献   

12.
13.
B F Lang 《The EMBO journal》1984,3(9):2129-2136
The DNA sequence of the second intron in the mitochondrial gene for subunit 1 of cytochrome oxidase (cox1), and the 3'' part of the structural gene have been determined in Schizosaccharomyces pombe. Comparing the presumptive amino acid sequence of the 3'' regions of the cox1 genes in fungi reveals similarly large evolutionary distances between Aspergillus nidulans, Saccharomyces cerevisiae and S. pombe. The comparison of exon sequences also reveals a stretch of only low homology and of general size variation among the fungal and mammalian genes, close to the 3'' ends of the cox1 genes. The second intron in the cox1 gene of S. pombe contains an open reading frame, which is contiguous with the upstream exon and displays all characteristics common to class I introns. Three findings suggest a recent horizontal gene transfer of this intron from an Aspergillus type fungus to S. pombe. (i) The intron is inserted at exactly the same position of the cox1 gene, where an intron is also found in A. nidulans. (ii) Both introns contain the highest amino acid homology between the intronic unassigned reading frames of all fungi identified so far (70% identity over a stretch of 253 amino acids). However, in the most homologous region, a GC-rich sequence is inserted in the A. nidulans intron, flanked by two direct repeats of 5 bp. The 37-bp insert plus 5 bp of direct repeat amounts to an extra 42 bp in the A. nidulans intron. (iii) TGA codons are the preferred tryptophan codons compared with TGG in all mitochondrial protein coding sequences of fungi and mammalia.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
The nucleotide sequence of 6225 base pairs (bp) of Euglena gracilis chloroplast DNA including the complete DNA sequence of the chloroplast-encoded ribulose-1,5-bisphosphate carboxylase large subunit gene along with the flanking DNA sequences is presented. The gene is greater than 5.5 kilobase pairs in length and is organized as 10 exons coding for 475 amino acids, separated by 9 introns. The exons range in size from 45 to 438 bp, while the introns range in size from 382 to 568 bp. The introns have highly conserved boundary sequences with the consensus, 5'-N GTGTGGATTT...(intron)...TTAATTTTAT N-3'. The introns are 82-85 mol% AT, with a pronounced T greater than A greater than G greater than C base bias in the RNA-like strand. They do not appear to encode any polypeptides. In addition, the introns have a conserved sequence 30-50 bp from their 3'-ends with the consensus, 5'-TACAGTTTGAAAATGA-3'. The 5'-TACA sequence bears some homology to the 5'-end of the TACTAACA sequence found in a similar location in yeast nuclear mRNA introns. The conserved sequences of the Euglena rbcL introns may be indicative of a splicing mechanism similar to that of eucaryotic nuclear mRNA introns and group II mitochondrial introns.  相似文献   

15.
Protein splicing is a series of enzymatic events involving intramolecular protein breakage, rejoining and intron homing, in which introns are able to promote the recombinative transposition of their own coding sequences. Eukaryotic and prokaryotic spliced proteins have conserved similar gene structure, but little amino acid identity. The genes coding for these spliced proteins contain internal in-frame introns that encode polypeptides that apparently self-excise from the resulting host protein sequences. Excision of the ‘protein intron’ is coupled with joining of the two flanking protein regions encoded by exons of the host gene. Some introns of this type encode DNA endonucleases, related to Group I RNA intron gene products, that stimulate gene conversion and self-transmission.  相似文献   

16.
《Gene》1997,185(1):147-152
We report the sequence of a 4.5-kb cDNA clone isolated from a human melanoma library which bears high amino acid sequence identity to the yeast mitochondrial (mt) DNA polymerase (Mip1p). This cDNA contains a 3720-bp open reading frame encoding a predicted 140-kDa polypeptide that is 43% identical to Mip1p. The N-terminal part of the sequence contains a 13 glutamine stretch encoded by a CAG trinucleotide repeat which is not found in the other DNA polymerases γ (Pol γ). Multiple amino acid sequence alignments with Pol γ from Saccharomyces cerevisiae, Schizosaccharomyces pombe, Pichia pastoris, Drosophila melanogaster, Xenopus laevis and Mus musculus show that these DNA polymerases form a family strongly conserved from yeast to man and are only loosely related to the Family A DNA polymerases.  相似文献   

17.
18.
The large subunits of mitochondrial ribosomes were isolated from two related frog species, Xenopus laevis and X. mulleri, and their proteins were compared by two-dimensional polyacrylamide gel electrophoresis. Three of the proteins observed in X. laevis are absent from X. mulleri, and four of the proteins observed in X. mulleri are absent from X. laevis. More than these seven such species-specific proteins may occur.Reciprocal crosses between frogs of the two species gave two groups of F1 hybrids. Nuclear genes in these hybrids derive equally from both species, while mitochondrial DNA (and therefore mitochondrial rRNA) derived exclusively from the maternal species. Electrophoretic analyses of the large subunit proteins of these F1 animals revealed that four of the species-specific proteins are present only when their corresponding species was the mother. While this result is consistent with the coding of these four proteins by mitochondrial DNA, it does not provide evidence against nuclear coding of these proteins. A fifth protein is absent from both F1 hybrids. A sixth is present in both F1 hybrids, and a seventh is present only when its corresponding species was the father. We conclude that at least these latter two mitochondrial ribosomal proteins are encoded by nuclear genes.  相似文献   

19.
B Dujon 《Cell》1980,20(1):185-197
The complete nucleotide sequence has been determined for the intron, its junctions and the flanking exon regions of the 21S rRNA gene in three genetically characterized strains differing by their omega alleles (omega+, omega- and omega n) and by their chloramphenicol-resistant mutations at the rib-1 locus. Comparison of these DNA sequences shows that: --omega+ differs from omega- and omega n by the presence of the intron (1143 bp), as well as by a second and unexpected mini-insert (66 bp) located 156 bp upstream within the exon, whose nature and functions are still unknown but whose striking palindromic structure may suggest a mitochondrial transposable element. --The two mutations C321R and C323R correspond to two different monosubstitutions, 56 bp apart in the omega- and omega n strains but separated by the intron in the omega+ strains. In relation to previous genetic results, a model is discussed assuming that the interactions of two different regions or genetic loci determine the chloramphenicol resistance, one of which contains the omega n mutations. --A long uninterrupted coding sequence able to specify a 235 amino acid polypeptide exists within the intron. This remarkable observation gives new insight into the origin of the mitochondrial introns and raises the question of the possible functions of intron-encoded polypeptides. Finally, sequence comparisons with evolutionarily distant organisms, showing that different rRNA introns are inserted at different positions of an otherwise highly conserved region of the gene, suggest a recent insertion of these introns and a mechanism for splicing after the assembly of the large ribosomal subunit.  相似文献   

20.
Gene translocations from the organelles to the nucleus are postulated by the endosymbiont hypothesis. We here report evidence for sequence insertions in the nuclear genomes of plants that are derived from noncoding regions of the mitochondrial genome. Fragments of mitochondrial group II introns are identified in the nuclear genomes of tobacco and a bean species. The duplicated intron sequences of 75–140 bp are derived from cis- and trans-splicing introns of genes encoding subunits 1 and 5 of the NADH dehydrogenase. The mitochondrial sequences are inserted in the vicinities of a lectin gene, different glucanase genes and a gene encoding a subunit of photosystem II. Sequence similarities between the nuclear and mitochondrial copies are in the range of 80 to 97%, suggesting recent transfer events that occurred in the basic glucanase genes before and in the lectin gene after the gene duplications in the evolution of the nuclear gene families. Overlapping regions of the same introns are in two instances also involved in intramitochondrial sequence duplications. Correspondence to: V. Knoop  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号