首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The mammalian H1 histone gene complement consists of at least seven H1 protein isoforms. These include five S-phase-dependent H1 protein subtypes and two more distantly related proteins, which are expressed upon terminal differentiation (H10) or during the pachytene stage of spermatogenesis (H1t). In the past, three replication-dependent murine H1 genes plus the H1 0 and H1t genes have been isolated and characterized. In this report, we describe the sequences of two more H1 genes, and we show that all five murine replication-dependent H1 genes and the H1t gene map to the region A2-3 on Chromosome (Chr) 13. This is in agreement with our previous finding that the human H1 histone gene complement maps to 6p21.3, which corresponds to the A2-3 region on the murine Chr 13. Previous reports have shown that the replication-independent H1 0 genes map to syntenic regions on Chrs 22 (human H10) and 15 (murine H1 0).  相似文献   

2.
3.
A rat histone H4 gene closely associated with the testis-specific H1t gene   总被引:4,自引:0,他引:4  
A rat histone H4 gene closely associated with the testis-specific H1t gene was isolated by screening the Sargent-Bonner rat genomic library using cloned human histone genes as probes. Both the H4 gene and the H1t gene are located on a 7-kb EcoRI genomic DNA fragment. Although the deduced amino acid sequence of the rat H4 histone is identical to that of the sequence of human histone H4, the nucleotide sequence of the coding region differs significantly from the coding region of the human H4 gene. Moreover, the relative spacing between the 5'-consensus sequence elements is unique for an H4 gene. S1-nuclease protection analyses reveal that both the H4 and H1t mRNA species are present in a fraction of rat testis cells highly enriched in pachytene spermatocytes, while only the H4 mRNA species is present in a rat myeloma cell line (Y3-Ag1.2.3). During a 1-h hydroxyurea treatment of the Y3 cells, which produces a 99% inhibition of DNA synthesis, the level of this H4 mRNA drops by only 50%, indicating that the stability of this mRNA is only partially coupled with DNA synthesis.  相似文献   

4.
5.
A solitary histone H3 gene encoding a novel H3 protein sequence has been isolated. This H3 gene maps to chromosome 1 (1g42), whereas we have shown previously that the majority of the human histone genes form a large cluster on chromosome 6 (6p21.3). In addition, a small cluster has been described at 1q21. The clustered histone genes are expressed during the S-phase of the cell cycle, hence their definition as replication-dependent histone genes. In contrast, expression of replacement histone genes is essentially cell-cycle independent; they are solitary genes and map outside the major clusters. The newly described H3 gene maps outside all known histone gene clusters and varies by four amino acid residues from the consensus mammalian H3 structure. In contrast to other solitary histone genes, this human H3 gene shows the consensus promoter and 3 flanking portions that are typical for replication-dependent genes.  相似文献   

6.
Histone variants expand chromatin functions in eukaryote genomes. H2A.B genes are testis-expressed short histone H2A variants that arose in placental mammals. Their biological functions remain largely unknown. To investigate their function, we generated a knockout (KO) model that disrupts all 3 H2A.B genes in mice. We show that H2A.B KO males have globally altered chromatin structure in postmeiotic germ cells. Yet, they do not show impaired spermatogenesis or testis function. Instead, we find that H2A.B plays a crucial role postfertilization. Crosses between H2A.B KO males and females yield embryos with lower viability and reduced size. Using a series of genetic crosses that separate parental and zygotic contributions, we show that the H2A.B status of both the father and mother, but not of the zygote, affects embryonic viability and growth during gestation. We conclude that H2A.B is a novel parental-effect gene, establishing a role for short H2A histone variants in mammalian development. We posit that parental antagonism over embryonic growth drove the origin and ongoing diversification of short histone H2A variants in placental mammals.

The unusual short histone variant H2A.B is a novel parental-effect gene that plays an important role in early mammalian development. Parental antagonism over embryonic growth resource allocation may have driven the origin and ongoing diversification of short histone H2A variants in placental mammals.  相似文献   

7.
8.
A human H1 histone gene and its flanking sequences were isolated from a human gene library using a fragment of the duck H5 histone gene as a hybridization probe. The primary structure of this human H1 histone (as deduced from the nucleotide sequence of the gene) reveals a close homology of H1 and H5 histones and fits the three-domain organization of all members of the H1 histone family. Within this protein organization, the C-terminal domain of H1 differs from the arginine-rich H5 in its distribution of the basic amino acids: the C-terminal domain of the human H1 shows only one arginine and most of the H5 specific arginine positions show lysine instead.  相似文献   

9.
D Porter  D Brown  D Wells 《DNA sequence》1991,1(3):197-206
Histone genes are one of the most widely studied multigene families in eucaryotes. Over 200 histone genes have been sequenced, primarily in vertebrates, echinoderms, fungi and plants. We present here the structure and genomic orientation of an H3-H4 histone gene pair from the marine copepod, Tigriopus californicus. These histone gene sequences are the first to be determined for the class Crustacea and among the first to be determined for protostomes. The H4 and H3 genes in Tigriopus are shown to be adjacent, to have opposite polarity, and to contain a 26 bp region of dyad symmetry centrally located within the spacer region between the two genes. A similarly located dyad element has been found in yeast which contributes to the coordinated cell cycle control of the adjacent histone genes. The Tigriopus H3-H4 histone gene pair is clustered with one H2A and two H2B histone genes on a 15 kb genomic Bam H1 fragment. The H4 gene sequence predicts an H4 protein with an unusual serine to threonine substitution at the amino terminal residue. The H3 gene sequence predicts an H3 protein which is identical to the vertebrate H3.2 histone.  相似文献   

10.
11.
12.
13.
B Drabent  E Kardalinou  D Doenecke 《Gene》1991,103(2):263-268
The gene coding for the human H1t histone, a testis-specific H1 subtype, was isolated from a genomic library using a human somatic H1 gene as a hybridization probe. The corresponding mRNA is not polyadenylated and encodes a 206-amino-acid protein. Sequence analysis and S1 nuclease mapping of the human H1t gene reveals that the 5' flanking region contains several consensus promoter elements, as described for somatic, i.e., S-phase-dependent H1 subtype genes. The 3' region includes the stem-and-loop structure necessary for mRNA processing of most histone mRNAs. Northern blot analysis with RNAs from different human tissues and cell lines revealed that only testicular RNA hybridized with this gene probe.  相似文献   

14.
15.
The DNA sequence of a chicken genomal fragment containing a histone H2A gene has been determined. It contains extensive 5' and 3' flanking regions and encodes a protein identical in sequence to the histone H2A protein isolated from chicken erythrocytes. In the 5' flanking region, a possible "TATA box" and three possible "cap sites" can be recognised upstream from the initiation codon. To the 5' side of the "TATA box" is found an unusual sequence of 21 A's interrupted by a central G residue. It occupies the same relative position as the P. miliaris H2A gene-specific 5' dyad symmetry sequence and the "CCAAT box" seen in other eukaryotic polymerase II genes but is clearly different from both. A significant feature of the 3' non-coding region is the presence of a 23 base-pair sequence that is nearly identical to a conserved region found in sea urchin histone genes. The coding region is extremely GC rich, with strong selection for these bases in the third position of codons. Not a single coding triplet ends in U. No intervening sequences were found in this gene.  相似文献   

16.
Summary The organization of histone gene clusters of the duckCairina moschata was studied in the DNA inserts of two recombinant phage that overlap and feature identical histone gene arrangements but differ in sequence details and in the extent of repetition of an AT-rich motif in one of the nontranscribed spacer regions. These few but substantial differences between otherwise nearly identical histone gene groups suggest that we have independently isolated alleles of the same site of the duck genome or that this gene arrangement occurs (with slight variations) more than once per haploid genome. Within the histone gene cluster described, H3 and H4 genes are duplicated (with inverted orientation), whereas one H1 gene is flanked by single H2A and H2B genes. The arrangement of duck histone genes described here is identical to a subsection of the chicken genome but differs from any other published histone gene cluster.  相似文献   

17.
18.
19.
Glioblastoma (GBM) is the most aggressive primary brain tumor in human. Recent studies on high-grade pediatric GBM have identified two recurrent mutations (K27M and G34R/V) in genes encoding histone H3 (H3F3A for H3.3 and HIST1H3B for H3.1).1,2 The two histone H3 mutations are mutually exclusive and give rise to tumors in different brain compartments.3 Recently, we4 and others5 have shown that the histone H3 K27M mutation specifically altered the di- and tri-methylation of endogenous histone H3 at Lys27. Genome-wide studies using ChIP-seq on H3.3K27M patient samples indicate a global reduction of H3K27me3 on chromatin. Remarkably, we also found a dramatic enrichment of H3K27me3 and EZH2 (the catalytic subunit H3K27 methyltransferase) at hundreds of gene loci in H3.3K27M patient cells. Here, we discuss potential mechanisms whereby H3K27me3 is enriched at chromatin loci in cells expressing the H3.3K27M mutation and report effects of Lys-to-Met mutations of other well-studied lysine residues of histone H3.1/H3.3 and H4 on the corresponding endogenous lysine methylation. We suggest that mutation(s) on histones may be found in a variety of human diseases, and the expression of mutant histones may help to address the function of histone lysine methylation and possibly other modifications in mammalian cells.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号