首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In earlier studies we identified a putative repressor of the human beta-globin gene, termed beta protein 1 (BP1), which binds to two silencer DNA sequences upstream of the adult human beta-globin gene and to a negative control region upstream of the adult delta-globin gene. Further studies demonstrated an inverse correlation between the binding affinity of the BP1 protein for the distal beta-globin silencer sequence and the severity of sickle cell anemia, suggesting a possible role for BP1 in determining the production of hemoglobin S. We have now cloned a cDNA expressing the BP1 protein. Sequencing revealed that BP1 is a member of the homeobox gene family and belongs to the subfamily called Distal-less (DLX), genes important in early development. Further analysis showed that BP1 is an isoform of DLX4. BP1 protein has repressor function towards the beta-globin promoter, acting through the two beta-globin DNA silencers, demonstrated in transient transfection assays. Strong BP1 expression is restricted to placenta and kidney tissue, with no expression in 48 other human tissues. BP1 exhibits regulated expression in the human erythroid cell line MB-02, where its expression decreases upon induction of the beta-globin gene. BP1 is thus the first member of the DLX family with known DNA binding sites and a function in globin gene regulation.  相似文献   

2.
3.
4.
5.
6.
Higher vertebrates appear to possess six genes encoding a homeodomain of the distal-less type. We report the cloning and expression pattern of the chicken DLX3 gene, a homeobox gene highly related to the DLX5 gene with regard to both the encoded protein structure and the expression pattern. DLX3 RNA was observed during the development of the olfactory and otic placodes, in the distal portion of the first and second visceral arch mesenchyme, in the growing limb buds, and in the tail tip. No expression occurs in the central nervous system.  相似文献   

7.
Cleft palate (CP) is one of the most commonly occurring craniofacial birth defects in humans. In order to study cleft palate in a naturally occurring model system, we utilized the Nova Scotia Duck Tolling Retriever (NSDTR) dog breed. Micro-computed tomography analysis of CP NSDTR craniofacial structures revealed that these dogs exhibit defects similar to those observed in a recognizable subgroup of humans with CP: Pierre Robin Sequence (PRS). We refer to this phenotype in NSDTRs as CP1. Individuals with PRS have a triad of birth defects: shortened mandible, posteriorly placed tongue, and cleft palate. A genome-wide association study in 14 CP NSDTRs and 72 unaffected NSDTRs identified a significantly associated region on canine chromosome 14 (24.2 Mb–29.3 Mb; praw = 4.64×10−15). Sequencing of two regional candidate homeobox genes in NSDTRs, distal-less homeobox 5 (DLX5) and distal-less homeobox 6 (DLX6), identified a 2.1 kb LINE-1 insertion within DLX6 in CP1 NSDTRs. The LINE-1 insertion is predicted to insert a premature stop codon within the homeodomain of DLX6. This prompted the sequencing of DLX5 and DLX6 in a human cohort with CP, where a missense mutation within the highly conserved DLX5 homeobox of a patient with PRS was identified. This suggests the involvement of DLX5 in the development of PRS. These results demonstrate the power of the canine animal model as a genetically tractable approach to understanding naturally occurring craniofacial birth defects in humans.  相似文献   

8.
9.
Mutation of distal-less homeobox 3 (DLX3) is responsible for human tricho-dento-osseous syndrome (TDO) with amelogenesis imperfecta, indicating a crucial role of DLX3 in amelogenesis. However, the expression pattern of DLX3 and its specific function in amelogenesis remain largely unknown. The aim of this study was to investigate the effects of DLX3 on enamel matrix protein (EMP) genes. By immunohistochemistry assays of mouse tooth germs, stronger immunostaining of DLX3 protein was identified in ameloblasts in the secretory stage than in the pre-secretory and maturation stages, and the same pattern was found for Dlx3 mRNA using Realtime PCR. In a mouse ameloblast cell lineage, forced expression of DLX3 up-regulated the expression of the EMP genes Amelx, Enam, Klk4, and Odam, whereas knockdown of DLX3 down-regulated these four EMP genes. Further, bioinformatics, chromatin immunoprecipitation, and luciferase assays revealed that DLX3 transactivated Enam, Amelx, and Odam through direct binding to their enhancer regions. Particularly, over-expression of mutant-DLX3 (c.571_574delGGGG, responsible for TDO) inhibited the activation function of DLX3 on expression levels and promoter activities of the Enam, Amelx, and Odam genes. Together, our data show that DLX3 promotes the expression of the EMP genes Amelx, Enam, Klk4, and Odam in amelogenesis, while mutant-DLX3 disrupts this regulatory function, thus providing insights into the molecular mechanisms underlying the enamel defects of TDO disease.  相似文献   

10.
11.
Homeodomain proteins are encoded by homeobox genes and regulate development and differentiation in many neuronal systems. The mouse vomeronasal organ (VNO) generates in situ mature chemosensory neurons from stem cells. The roles of homeodomain proteins in neuronal differentiation in the VNO are poorly understood. Here we have characterized the expression patterns of 28 homeobox genes in the VNO of C57BL/6 mice at postnatal stages using multicolor fluorescent in situ hybridization. We identified 11 homeobox genes (Dlx3, Dlx4, Emx2, Lhx2, Meis1, Pbx3, Pknox2, Pou6f1, Tshz2, Zhx1, Zhx3) that were expressed exclusively in neurons; 4 homeobox genes (Pax6, Six1, Tgif1, Zfhx3) that were expressed in all non-neuronal cell populations, with Pax6, Six1 and Tgif1 also expressed in some neuronal progenitors and precursors; 12 homeobox genes (Adnp, Cux1, Dlx5, Dlx6, Meis2, Pbx2, Pknox1, Pou2f1, Satb1, Tshz1, Tshz3, Zhx2) with expression in both neuronal and non-neuronal cell populations; and one homeobox gene (Hopx) that was exclusively expressed in the non-sensory epithelium. We studied further in detail the expression of Emx2, Lhx2, Meis1, and Meis2. We found that expression of Emx2 and Lhx2 initiated between neuronal progenitor and neuronal precursor stages. As far as the sensory neurons of the VNO are concerned, Meis1 and Meis2 were only expressed in the apical layer, together with Gnai2, but not in the basal layer.  相似文献   

12.
13.
The distal-less homeobox gene 4 (DLX4) is a member of the DLX family of homeobox genes. Although absent from most normal adult tissues, DLX4 is widely expressed in leukemia, lung, breast, ovarian and prostate cancers. However the molecular targets, mechanisms and pathways that mediate the role of DLX4 in tumor metastasis are poorly understood. In this study, we found that DLX4 induces cancer cells to undergo epithelial to mesenchymal transition (EMT) through TWIST. Overexpression of DLX4 increased expression of TWIST expression in cancer cell lines, resulting in increased migratory and invasive capacity. Likewise, knocking down expression of DLX4 decreased TWIST expression and the migration ability of cancer cell lines. DLX4 bound to regulatory regions of the TWIST gene. Both western blotting and immunohistochemistry staining showed that the expression of DLX4 and TWIST are correlated in most of breast tumors. Taken together, these data from both cell models and tumor tissues demonstrate that DLX4 not only upregulates TWIST expression but also induces EMT and tumor metastasis. Altogether, we propose a new pathway in which DLX4 drives expression of TWIST to promote EMT, cancer migration, invasion and metastasis.  相似文献   

14.
15.
16.
We isolated and mapped the human homeobox gene EVX1. This gene encodes a protein of 407 amino acid residues containing a homeodomain closely related to the Drosophila even-skipped (eve) segmentation gene of the pair-rule class. EVX1 belongs to a small family of vertebrate eve-related homeobox genes including human EVX1 and EVX2 genes, their murine homologs, Evx 1 and Evx 2, and the frog Xhox-3 gene. We previously reported that EVX2 is localized at the 5' end of the HOX4 locus on chromosome 2. We show here that EVX1 is localized at the 5' end of the HOX1 locus on chromosome 7, 48 kb upstream from the most 5' of the eleven HOX1 genes, namely HOX1J. Both EVX genes are transcribed in an opposite orientation as compared to that of adjacent HOX genes. Human HOX1 and HOX4 complex loci appear to be both closely linked to a homeobox gene of the EVX family.  相似文献   

17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号