首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We investigated the regulation of the two of the three groE operons (cpn.1 and cpn.2) of the root-nodulating bacterium R. leguminosarum strain A34. Both are heat inducible, and both have a CIRCE sequence in their upstream regions, suggesting regulation by an HrcA repressor. Mutagenesis of the CIRCE sequence upstream of cpn.1 led to an increase in the levels of cpn.1 mRNA, and knock-out of the hrcA gene increased the level of Cpn60.1 protein (the GroEL homologue encoded by the cpn.1 operon). Inactivation of the hrcA gene also caused increased expression of a 29 kDa protein that was identified as RhiA, a component of a quorum-sensing system. However, neither loss of the upstream CIRCE sequence, nor loss of HrcA function, had any effect on expression from the cpn.2 promoter. Further analysis of the cpn.2 upstream region suggested regulation could be mediated by an RpoH system, and this was confirmed by deleting the rpoH gene from the chromosome, which led to a decreased level of Cpn60.2 expression. Inactivation of RpoH led to a reduction in growth rate which could be partly compensated for by inactivation of HrcA, indicating an overlap in the in vivo function of the proteins regulated by these two systems. Accession numbers: DQ173160 (hrcA operon); DQ173161 (rpoH gene).  相似文献   

2.
The HrcA protein is known to bind the cis-element CIRCE and repress expression of hsp60 in certain bacteria. However, recent data from cyanobacteria have seriously questioned the HrcA/CIRCE interaction paradigm. A hrcA null mutant showed constitutive expression of Hsp60 proteins [GroEL/Cpn60(GroEL2)], and an unexpected further increase in GroEL during temperature upshift, suggesting involvement of regulatory mechanisms other than HrcA in groESL expression in Anabaena. The negative regulation of both hsp60 genes [groEL and cpn60 (groEL2)] at CIRCE element was established by: (1) constitutive expression of Green Fluorescent Protein gene, tagged to Anabaena hsp60 promoters, in E. coli, and its repression upon co-expression of Anabaena HrcA and (2) specific binding of Anabaena HrcA to the CIRCE element. Deletion analysis of other cis-elements further distinguished (a) a photo-regulation by the K-box and (b) thermoregulation from a novel H-box, over and above the negative regulation by HrcA at CIRCE.  相似文献   

3.
4.
Bacterial elongation factor Tu (EF-Tu) is a model monomeric G protein composed of three covalently linked domains. Previously, we evaluated the contributions of individual domains to the thermostability of EF-Tu from the thermophilic bacterium Bacillus stearothermophilus. We showed that domain 1 (G-domain) sets up the basal level of thermostability for the whole protein. Here we chose to locate the thermostability determinants distinguishing the thermophilic domain 1 from a mesophilic domain 1. By an approach of systematically swapping protein regions differing between G-domains from mesophilic Bacillus subtilis and thermophilic B. stearothermophilus, we demonstrate that a small portion of the protein, the N-terminal 12 amino acid residues, plays a key role in the thermostability of this domain. We suggest that the thermostabilizing effect of the N-terminal region could be mediated by stabilizing the functionally important effector region. Finally, we demonstrate that the effect of the N-terminal region is significant also for the thermostability of the full-length EF-Tu.  相似文献   

5.
Integrative and conjugative elements (ICEs) are agents of horizontal gene transfer and have major roles in evolution and acquisition of new traits, including antibiotic resistances. ICEs are found integrated in a host chromosome and can excise and transfer to recipient bacteria via conjugation. Conjugation involves nicking of the ICE origin of transfer (oriT) by the ICE–encoded relaxase and transfer of the nicked single strand of ICE DNA. For ICEBs1 of Bacillus subtilis, nicking of oriT by the ICEBs1 relaxase NicK also initiates rolling circle replication. This autonomous replication of ICEBs1 is critical for stability of the excised element in growing cells. We found a conserved and previously uncharacterized ICE gene that is required for conjugation and replication of ICEBs1. Our results indicate that this gene, helP (formerly ydcP), encodes a helicase processivity factor that enables the host-encoded helicase PcrA to unwind the double-stranded ICEBs1 DNA. HelP was required for both conjugation and replication of ICEBs1, and HelP and NicK were the only ICEBs1 proteins needed for replication from ICEBs1 oriT. Using chromatin immunoprecipitation, we measured association of HelP, NicK, PcrA, and the host-encoded single-strand DNA binding protein Ssb with ICEBs1. We found that NicK was required for association of HelP and PcrA with ICEBs1 DNA. HelP was required for association of PcrA and Ssb with ICEBs1 regions distal, but not proximal, to oriT, indicating that PcrA needs HelP to progress beyond nicked oriT and unwind ICEBs1. In vitro, HelP directly stimulated the helicase activity of the PcrA homologue UvrD. Our findings demonstrate that HelP is a helicase processivity factor needed for efficient unwinding of ICEBs1 for conjugation and replication. Homologues of HelP and PcrA-type helicases are encoded on many known and putative ICEs. We propose that these factors are essential for ICE conjugation, replication, and genetic stability.  相似文献   

6.
7.
Integrative and conjugative elements (ICEs) are widespread mobile genetic elements that are usually found integrated in bacterial chromosomes. They are important agents of evolution and contribute to the acquisition of new traits, including antibiotic resistances. ICEs can excise from the chromosome and transfer to recipients by conjugation. Many ICEs are site-specific in that they integrate preferentially into a primary attachment site in the bacterial genome. Site-specific ICEs can also integrate into secondary locations, particularly if the primary site is absent. However, little is known about the consequences of integration of ICEs into alternative attachment sites or what drives the apparent maintenance and prevalence of the many ICEs that use a single attachment site. Using ICEBs1, a site-specific ICE from Bacillus subtilis that integrates into a tRNA gene, we found that integration into secondary sites was detrimental to both ICEBs1 and the host cell. Excision of ICEBs1 from secondary sites was impaired either partially or completely, limiting the spread of ICEBs1. Furthermore, induction of ICEBs1 gene expression caused a substantial drop in proliferation and cell viability within three hours. This drop was dependent on rolling circle replication of ICEBs1 that was unable to excise from the chromosome. Together, these detrimental effects provide selective pressure against the survival and dissemination of ICEs that have integrated into alternative sites and may explain the maintenance of site-specific integration for many ICEs.  相似文献   

8.
Most bacterial genomes contain horizontally acquired and transmissible mobile genetic elements, including temperate bacteriophages and integrative and conjugative elements. Little is known about how these elements interact and co-evolved as parts of their host genomes. In many cases, it is not known what advantages, if any, these elements provide to their bacterial hosts. Most strains of Bacillus subtilis contain the temperate phage SPß and the integrative and conjugative element ICEBs1. Here we show that the presence of ICEBs1 in cells protects populations of B. subtilis from predation by SPß, likely providing selective pressure for the maintenance of ICEBs1 in B. subtilis. A single gene in ICEBs1 (yddK, now called spbK for SPß killing) was both necessary and sufficient for this protection. spbK inhibited production of SPß, during both activation of a lysogen and following de novo infection. We found that expression spbK, together with the SPß gene yonE constitutes an abortive infection system that leads to cell death. spbK encodes a TIR (Toll-interleukin-1 receptor)-domain protein with similarity to some plant antiviral proteins and animal innate immune signaling proteins. We postulate that many uncharacterized cargo genes in ICEs may confer selective advantage to cells by protecting against other mobile elements.  相似文献   

9.
The bacterial heat shock response is characterized by the elevated expression of a number of chaperone complexes and proteases, including the DnaK-GrpE-DnaJ and the GroELS chaperone complexes. In order to investigate the importance of the DnaK chaperone complex for growth and heat shock response regulation in Lactococcus lactis, we have constructed two dnaK mutants with C-terminal deletions in dnaK. The minor deletion of 65 amino acids in the dnaKΔ2 mutant resulted in a slight temperature-sensitive phenotype. BK6, containing the larger deletion of 174 amino acids (dnaKΔ1), removing the major part of the inferred substrate binding site of the DnaK protein, exhibited a pronounced temperature-sensitive phenotype and showed altered regulation of the heat shock response. The expression of the heat shock proteins was increased at the normal growth temperature, measured as both protein synthesis rates and mRNA levels, indicating that DnaK could be involved in the regulation of the heat shock response in L. lactis. For Bacillus subtilis, it has been found (A. Mogk, G. Homuth, C. Scholz, L. Kim, F. X. Schmid, and W. Schumann, EMBO J. 16:4579–4590, 1997) that the activity of the heat shock repressor HrcA is dependent on the chaperone function of the GroELS complex and that a dnaK insertion mutant has no effect on the expression of the heat shock proteins. The present data from L. lactis suggest that the DnaK protein could be involved in the maturation of the homologous HrcA protein in this bacterium.  相似文献   

10.
11.
The mobile genetic element ICEBs1 is an integrative and conjugative element (ICE) found in Bacillus subtilis. One of the ICEBs1 genes, cwlT, encodes a cell wall hydrolase with two catalytic domains, a muramidase and a peptidase. We found that cwlT is required for ICEBs1 conjugation. We examined the role of each of the two catalytic domains and found that the muramidase is essential, whereas the peptidase is partially dispensable for transfer of ICEBs1. We also found that the putative signal peptide in CwlT is required for CwlT to function in conjugation, consistent with the notion that CwlT is normally secreted from the cytoplasm. We found that alteration of the putative lipid attachment site on CwlT had no effect on its role in conjugation, indicating that if CwlT is a lipoprotein, the lipid attachment is not required for conjugation. Finally, we found conditions supporting efficient transfer of ICEBs1 into and out of Bacillus anthracis and that cwlT was needed for ICEBs1 to function in B. anthracis. The mature cell wall of B. anthracis is resistant to digestion by CwlT, indicating that CwlT might act during cell wall synthesis, before modifications of the peptidoglycan are complete.  相似文献   

12.
HrcA, a negative control repressor for chaperone expression from the obligate thermophile Bacillus thermoglucosidasius KP1006, was purified in a His-tagged form in the presence of 6 M urea but hardly renatured to an intact state due to extreme insolubility. Renaturation trials revealed that the addition of DNA to purified B. thermoglucosidasius HrcA can result in solubilization of HrcA free from the denaturing agent urea. Results from band shift and light scattering assays provided three new findings: (i) any species of DNA can serve to solubilize B. thermoglucosidasius HrcA, but DNA containing the CIRCE (controlling inverted repeat of chaperone expression) element is far more effective than other nonspecific DNA; (ii) B. thermoglucosidasius HrcA renatured with nonspecific DNA bound the CIRCE element in the molecular ratio of 2.6:1; and (iii) B. thermoglucosidasius HrcA binding to the CIRCE element was stable at below 50 degrees C whereas the complex was rapidly denatured at 70 degrees C, suggesting that the breakdown of HrcA is induced by heat stress and HrcA may act as a thermosensor to affect the expression of heat shock regulatory genes. These results will help to determine the nature of HrcA protein molecules.  相似文献   

13.
《Gene》1996,168(1):55-60
We have cloned and sequenced a 3574-bp Bacillus subtilis (Bs) DNA fragment located between the nrdA and citB genes at about 169° on the chromosome. An Escherichia coli strain, LBG1605, carrying a mutated ptsH gene (encoding HPr (His-containing protein) of the bacterial phosphotransferase system (PTS)) and complemented for PTS activity with the ptsH of Staphylococcus carnosus, exhibited reduced mannitol fermentation activity when transformed with a plasmid bearing this 3574-bp Bs fragment. This fragment contained an incomplete and two complete open reading frames (ORFs). The product of the first complete ORF, a protein composed of 235 amino acids (aa) (25 038 Da), was found to be responsible for the observed reduced mannitol fermentation. The 3′ part of this 705-bp second ORF and the 428-bp incomplete first ORF encode aa sequences exhibiting almost 40% sequence identity. However, the function of these two proteins remains unknown. The third ORF, the 1893-bp prkA gene, encodes a protein (PrkA) of 72 889 Da. PrkA possesses the A-motif of nucleotide-binding proteins and exhibits distant homology to eukaryotic protein kinases. Several of the essential aa in the loops known to form the active site of cyclic adenosine 3′,5′-monophosphate (cAMP)-dependent protein kinase appeared to be conserved in PrkA. After expression of prkA and purification of PrkA, we could demonstrate that PrkA can indeed phosphorylate a Bs 60-kDa protein at a Ser residue.  相似文献   

14.
RecQ family helicases function as safeguards of the genome. Unlike Escherichia coli, the Gram-positive Bacillus subtilis bacterium possesses two RecQ-like homologues, RecQ[Bs] and RecS, which are required for the repair of DNA double-strand breaks. RecQ[Bs] also binds to the forked DNA to ensure a smooth progression of the cell cycle. Here we present the first biochemical analysis of recombinant RecQ[Bs]. RecQ[Bs] binds weakly to single-stranded DNA (ssDNA) and blunt-ended double-stranded DNA (dsDNA) but strongly to forked dsDNA. The protein exhibits a DNA-stimulated ATPase activity and ATP- and Mg2+-dependent DNA helicase activity with a 3′→5′ polarity. Molecular modeling shows that RecQ[Bs] shares high sequence and structure similarity with E. coli RecQ. Surprisingly, RecQ[Bs] resembles the truncated Saccharomyces cerevisiae Sgs1 and human RecQ helicases more than RecQ[Ec] with regard to its enzymatic activities. Specifically, RecQ[Bs] unwinds forked dsDNA and DNA duplexes with a 3′-overhang but is inactive on blunt-ended dsDNA and 5′-overhung duplexes. Interestingly, RecQ[Bs] unwinds blunt-ended DNA with structural features, including nicks, gaps, 5′-flaps, Kappa joints, synthetic replication forks, and Holliday junctions. We discuss these findings in the context of RecQ[Bs]''s possible functions in preserving genomic stability.  相似文献   

15.
We identified a functional single strand origin of replication (sso) in the integrative and conjugative element ICEBs1 of Bacillus subtilis. Integrative and conjugative elements (ICEs, also known as conjugative transposons) are DNA elements typically found integrated into a bacterial chromosome where they are transmitted to daughter cells by chromosomal replication and cell division. Under certain conditions, ICEs become activated and excise from the host chromosome and can transfer to neighboring cells via the element-encoded conjugation machinery. Activated ICEBs1 undergoes autonomous rolling circle replication that is needed for the maintenance of the excised element in growing and dividing cells. Rolling circle replication, used by many plasmids and phages, generates single-stranded DNA (ssDNA). In many cases, the presence of an sso enhances the conversion of the ssDNA to double-stranded DNA (dsDNA) by enabling priming of synthesis of the second DNA strand. We initially identified sso1 in ICEBs1 based on sequence similarity to the sso of an RCR plasmid. Several functional assays confirmed Sso activity. Genetic analyses indicated that ICEBs1 uses sso1 and at least one other region for second strand DNA synthesis. We found that Sso activity was important for two key aspects of the ICEBs1 lifecycle: 1) maintenance of the plasmid form of ICEBs1 in cells after excision from the chromosome, and 2) stable acquisition of ICEBs1 following transfer to a new host. We identified sequences similar to known plasmid sso''s in several other ICEs. Together, our results indicate that many other ICEs contain at least one single strand origin of replication, that these ICEs likely undergo autonomous replication, and that replication contributes to the stability and spread of these elements.  相似文献   

16.
17.
ICEBs1 is an integrative and conjugative element found in the chromosome of Bacillus subtilis. ICEBs1 encodes functions needed for its excision and transfer to recipient cells. We found that the ICEBs1 gene conE (formerly yddE) is required for conjugation and that conjugative transfer of ICEBs1 requires a conserved ATPase motif of ConE. ConE belongs to the HerA/FtsK superfamily of ATPases, which includes the well-characterized proteins FtsK, SpoIIIE, VirB4, and VirD4. We found that a ConE-GFP (green fluorescent protein) fusion associated with the membrane predominantly at the cell poles in ICEBs1 donor cells. At least one ICEBs1 product likely interacts with ConE to target it to the membrane and cell poles, as ConE-GFP was dispersed throughout the cytoplasm in a strain lacking ICEBs1. We also visualized the subcellular location of ICEBs1. When integrated in the chromosome, ICEBs1 was located near midcell along the length of the cell, a position characteristic of that chromosomal region. Following excision, ICEBs1 was more frequently found near a cell pole. Excision of ICEBs1 also caused altered positioning of at least one component of the replisome. Taken together, our findings indicate that ConE is a critical component of the ICEBs1 conjugation machinery, that conjugative transfer of ICEBs1 from B. subtilis likely initiates at a donor cell pole, and that ICEBs1 affects the subcellular position of the replisome.Integrative and conjugative elements (also known as conjugative transposons) and conjugative plasmids are key elements in horizontal gene transfer and are capable of mediating their own transfer from donor to recipient cells. ICEBs1 is an integrative and conjugative element found in some Bacillus subtilis strains. Where found, ICEBs1 is integrated into the leucine tRNA gene trnS-leu2 (Fig. (Fig.1)1) (7, 14, 21).Open in a separate windowFIG. 1.Genetic map of ICEBs1. conE (formerly yddE), regulatory genes (gray arrows), and genes required for integration, excision, and nicking (hatched arrows) are indicated. The number of transmembrane (TM) segments for each protein predicted by cPSORTdb (46) is indicated below each gene. Other topology programs yield similar but not identical predictions.ICEBs1 gene expression, excision, and potential mating are induced by activation of RecA during the SOS response following DNA damage (7). In addition, ICEBs1 is induced by increased production or activation of the ICEBs1-encoded regulatory protein RapI. Production and activity of RapI are indicative of the presence of potential mating partners that do not contain a copy of ICEBs1 (7). Under inducing conditions, the ICEBs1 repressor ImmR (6) is inactivated by proteolytic cleavage mediated by the antirepressor and protease ImmA (12). Most ICEBs1 genes then become highly expressed (7). One of these genes (xis) encodes an excisionase, which in combination with the element''s integrase causes efficient excision and formation of a double-stranded circle (7, 38). The circular form is nicked at the origin of transfer, oriT, by a DNA relaxase, the product of nicK (39). Under appropriate conditions, ICEBs1 can then be transferred by mating into B. subtilis and other species, including the pathogens Listeria monocytogenes and Bacillus anthracis (7). Once transferred to a recipient, ICEBs1 can be stably integrated into the genome at its attachment site in trnS-leu2 by the ICEBs1-encoded integrase (38).In contrast to what is known about ICEBs1 genes and proteins involved in excision, integration, and gene regulation, less is known about the components that make up gram-positive organisms'' mating machinery, defined as the conjugation proteins involved in DNA transfer (18, 24). The well-characterized mating machinery of gram-negative organisms can serve as a preliminary model (15, 16, 37, 48). Gram-negative organisms'' mating machinery is a type IV secretion system composed of at least eight conserved proteins that span the cell envelope. For example, the conjugation apparatus of the Agrobacterium tumefaciens Ti plasmid (pTi) is composed of 11 proteins (VirB1 through VirB11), including the ATPase VirB4 (16). VirB4 family members interact with several components of their cognate secretion systems and may energize machine assembly and/or substrate transfer (16, 48). The secretion substrate is targeted to the conjugation machinery by a coupling protein. Coupling proteins, such as VirD4 of pTi, interact with a protein attached to the end of the DNA substrate and couple the substrate to other components of the conjugation machinery. Coupling proteins might also energize the translocation of DNA through the machinery. Both VirB4 and VirD4 belong to the large HerA/FtsK superfamily of ATPases (29). Two other characterized members of this superfamily are the chromosome-partitioning proteins FtsK and SpoIIIE (29), which are ATP-dependent DNA pumps (reviewed in reference 2).Some of the proteins encoded by the conjugative elements of gram-positive organisms are homologous to components of the conjugation machinery from gram-negative organisms (1, 9, 14, 29), indicating that some aspects of conjugative DNA transfer may be similar in gram-positive and gram-negative organisms. For example, ConE (formerly YddE) of ICEBs1 has sequence similarities to VirB4 (29). YdcQ may be the ICEBs1-encoded coupling protein, as it is phylogenetically related to other coupling proteins (29, 44). Despite some similarities, the cell envelopes and many of the genes encoding the conjugation machinery are different between gram-positive and gram-negative organisms, indicating that there are likely to be significant structural and mechanistic differences as well.To begin to define the conjugation machinery of ICEBs1 and to understand spatial aspects of conjugation, we examined the function and subcellular location of ConE of ICEBs1. Our results indicate that ConE is likely a crucial ATPase component of the ICEBs1 conjugation machinery. We found that ConE and excised ICEBs1 DNA were located at or near the cell poles. We propose that the conjugation machinery is likely located at the cell poles and that mating might occur from a donor cell pole.  相似文献   

18.
19.
《Gene》1996,171(1):59-63
A chromosomal DNA fragment containing the Bacillus macquariensis (Bm) ATP-dependent phosphofructokinase-encoding gene (pfk) was cloned from a subgenomic library in pUC19 using a PCR-derived probe. The region containing pfk, including flanking sequences, was sequenced and the deduced amino acid sequence (aa) was found to be homologous to other PFK, but it contained two single-aa changes conserved in a range of other organisms from pro- and eukaryotic origins. Enzymatic studies with PFK purified from overproducing Escherichia coli (Ec) host cells showed that the Bm enzyme is similar to B. stearothermophilus (Bs) PFK in many respects and that it is relatively cold stable.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号