首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The hAT transposons, very abundant in all kingdoms, have a common evolutionary origin probably predating the plant-fungi-animal divergence. In this paper we present their general characteristics. Members of this superfamily belong to Class II transposable elements. hAT elements share transposase, short terminal inverted repeats and eight base-pairs duplication of genomic target. We focus on hAT elements in Drosophila, especially hobo. Its distribution, dynamics and impact on genome restructuring in laboratory strains as well as in natural populations are reported. Finally, the evolutionary history of hAT elements, their domestication and use as transgenic tools are discussed.  相似文献   

2.
A modified hobo element from Drosophila melanogaster was introduced into embryos of the housefly, Musca domestica (family Muscidae) and the Queensland fruitfly, Bactrocera tryoni (family Tephritidae) to assess its ability to transpose. Hobo was capable of transposition in these species and transposition products had all of the hallmarks of hobo transposition products recovered from D. melanogaster, including the movement only of sequences precisely delimited by the inverted terminal repeats of hobo, the creation of an 8 by duplication of the insertion site and an absolute requirement for hobo-encoded transposase. Transposition of hobo into the target gene resulted in a non-random distribution of insertion sites, with 10 of 38 independent insertions into the same nucleotide position. The results indicate that hobo can transpose in heterologous species, further demonstrating the similarty of hobo to Ac (Activator) of Zea mays and Tam3 of Antirrhinum majus. Hobo has excellent potential to act as a gene vector or gene tagging agent in nondrosophilid insects.  相似文献   

3.
Transposable elements (TEs) are nucleotide sequences found in most studied genomes. These elements are highly diversified and have a large variation in nucleotide structure and mechanisms of transposition. hobo is a member of class II, belonging to hAT superfamily, described inDrosophila melanogaster, and it presents in its Open Reading Frame, a repetitive region encoding the amino acids threonine-proline-glutamic acid (TPE), which shows variability in the number of repeats in some regions of the world. Due to this variability some evolutionary scenarios of the hobo element are discussed, such as the scenario of the invasion of hobo element in populations ofD. melanogaster. In the present study, we investigated 22 DNA sequences of D. melanogaster and seven sequences ofD. simulans, both from South America, to check the number of repetitions of TPE, in order to clarify the evolutionary scenario of thehobo element in these populations. Our results showed a monomorphism in populations of both species in South America, with only three TPE repeats. Hence, we discuss and propose an evolutionary scenario of the invasion of the hobo element in populations of D. melanogaster and D. simulans.  相似文献   

4.
Mobility of the hobo transposable element was determined for several strains of Drosophila melanogaster and several Drosophila species. Mobility was assessed by use of an in vivo transient assay in the soma of developing embryos, which monitored hobo excision from injected indicator plasmids. Excision was detected in a D. melanogaster strain (cn; ry 42) devoid of endogenous hobo elements only after co-injection of a helper plasmid containing functional hobo transposase under either heat shock or normal promoter regulation. Excision was also detected in D. melanogaster without helper in strains known to contain genomic copies of hobo. In Drosophila species confirmed not to contain hobo, hobo excision occurred at significant rates both in the presence and absence of co-injected helper plasmid. In four of the seven species tested, excision frequencies were two- to fivefold lower in the presence of plasmid-borne hobo. hobo excision donor sites were sequenced in indicator plasmids extracted from D. melanogaster cn; ry 42 and D. virilis embryos. In the presence of hobo transposase, the predominant excision sites were identical in both species, having breakpoints at the hobo termini with an inverted duplication of proximal insertion site DNA. However, in the absence of hobo transposase in D. virilis, excision breakpoints were apparently random and occurred distal to the hobo termini. The data indicate that hobo is capable of functioning in the soma during embryogenesis, and that its mobility is unrestricted in drosophilids. Furthermore, drosophilids not containing hobo are able to mobilize hobo, presumably by a hobo-related cross-mobilizing system. The cross-mobilizing system in D. virilis is not functionally identical to hobo with respect to excision sequence specificity.  相似文献   

5.
The cytological structure of the X chromosome and the DNA organisation of the singed locus were examined in five singed bristle mutants of Drosophila melanogaster. These mutants are all derived from the unstable mutant singed-49, isolated from a wild population in the Russian Far East in 1975. Rearrangements were found at a site within the first intron of the singed gene, where a hobo element is inserted in these mutants. One rearrangement, which is associated with a strong bristle phenotype, has an inversion between 2D and the location of singed at 7D, which separates the singed promoter from the singed coding region. Two phenotypically wild-type derivatives have smaller rearrangements within the first intron which do not appear to interfere with singed expression. Two derivatives with bristle phenotypes have more complex rearrangements, and one of them shows a dominant or antimorphic phenotype. DNA blotting and in situ hybridisation experiments show that, in addition to these rearrangements at a hobo element inserted at singed, other hobo elements in these strains have been mobilised. This system is therefore similar to others in which functional hobo elements continue to transpose, resulting in elevated rates of mutation and chromosome rearrangement.  相似文献   

6.
7.
Using fluorescent in situ hybridization technique (FISH), the frequency of hobo and P mobile elements transpositions on X chromosomes from the y 2-717 , isolated from the Uman’ population of Drosophila melanogaster, as well as from its phenotypically normal and mutant derivatives, obtained as a result of crosses the males examined with the C(I)DX,ywf/Y females, was evaluated. It was demonstrated that the maximum frequency of hobo transpositions on X chromosomes of the males from derivative strains, subjected to repeated hobo-dysgenic crosses reached a value of 1.2 × 10?2 per site per X chromosome per generation. The number of hobo copies in male X chromosomes from derivative strains was 3 times higher than in the original initial strain. Furthermore, the “old” hobo sites remained unchanged. In derivative strains, the frequency of hobo insertion was higher than that of excisions. One of the derivative strains, y 1t-717a1k3-2 , was characterized by high intrastrain instability of hobo element localization. In the y 2-717a1k3 and y 1t-717a1k3-2 strains a large inversion, In(1)IB; 13CD, was described. At the absence of the full-sized P element in the strains involved in crosses, maximum frequency of P element transpositions in the derivative strains reached a value of 1.2 × 10?2 per site per X chromosome per generation.  相似文献   

8.
Transposons are mobile genetic elements that are found in all eukaryotic and prokaryotic species studied to date. The Maize Activator (Ac) transposase recognizes and excises Ac and Dissociation (Ds) elements and mediates insertion elsewhere in the genome. Insertions of Ds can cause disruption in gene sequences and hence are important functional genomics tool for tagging and cloning of unknown gene sequences. The involvement of Ac transposase (AcTPase) in Ds movement is well documented; however, protein structure and function of AcTPase is poorly understood. To express the maize AcTPase in E. coli, Ac cDNA was synthesized with an N-terminal 6xHis tag and cloned in pTrcAc expression vector. The expression cassette was induced in Rosetta2 (DE3) E. coli lines. End-point RT-PCR confirmed the integrity of AcTPase mRNA during cell culture. Autoinducing cultures grown at 37 °C produced prominent partial AcTPase products of ~40 kDa and ~70 kDa. Trypsin digestion and mass spectrometry analyses confirmed AcTPase in both the eluted peptides. When the cultures were grown at 22–25 °C for 24 h the expected ~90 kDa AcTPase soluble product was detected. The successful expression of full length AcTPase in soluble form allows further investigation of its structure and function.  相似文献   

9.
Somatic mutation and recombination test on wing cells of Drosophila melanogaster showed that the recombination frequency in the somatic tissues of strains studied correlated with the presence of a full-length copy of the hobo transposable element in the genome. Transposition of hobo in somatic tissue cells at a frequency 3.5 × 10?2 per site per X chromosome was shown by fluorescence in situ hybridization with salivary gland polytene chromosomes of larvae of one of the D. melanogaster strains having a full-length hobo copy.  相似文献   

10.
Activator/Dissociation (Ac/Ds) transposable elements have been used in maize insertional mutagenesis as a complement to Mutator (Mu). In this study, to further improve the efficiency of the Ac/Ds mutagenesis system, we adopted apt1-m1 (Ac) on the long arm of chromosome 9 (9L) as a donor Ac to create an Ac insertion library. This system is based on the negative selection pressure against the donor Ac, and it was highly efficient for isolating new transposition events. We obtained 9,625 transposition events from 1083 F1 ears with an average transposition rate of 8.66?% (rates ranged from 1.11 to 29.73?%). We also adopted a modified PCR-based genome walking strategy to improve the efficiency of the new method for isolating transposon-flanking sequences. This method is more efficient than the Southern-based method that was used in previous studies. A validation step was developed to distinguish transposon tags derived from newly transposed Ac or Ds elements. Using this PCR-based method, we isolated 67 inheritable flanking sequences from the apt1-m1 (Ac) transposition library; of these, 51 were confirmed as tr-Ac-flanking sequences and 11 were tr-Ds-flanking sequences. Similar to other Ac donors from different loci, the apt1-m1 (Ac) system also exhibited a preference for short distance transposition. In this study, we have further improved the Ac mutagenesis system in maize for gene isolation and functional genomics studies.  相似文献   

11.
A. F. MacRae  M. T. Clegg 《Genetica》1992,86(1-3):55-66
We present data on evolution of the Ac/Ds family of transposable elements in select grasses (Poaceae). An Ac-like element was cloned from a DNA library of the grass Pennisetum glaucum (pearl millet) and 2387 bp of it have been sequenced. When the pearl millet Ac-like sequence is aligned with the corresponding region of the maize Ac sequence, it is found that all sequences corresponding to intron II in maize Ac are absent in pearl millet Ac. Kimura's evolutionary distance between maize and pearl millet Ac sequences is estimated to be 0.429±0.020 nucleotide substitutions per site. This value is not significantly different from the average number of synonymous substitutions for coding regions of the Adh1 gene between maize and pearl millet, which is 0.395±0.051 nucleotide substitutions per site. If we can assume Ac and Adh1 divergence times are equivalent between maize and pearl millet, then the above calculations suggest Ac-like sequences have probably not been strongly constrained by natural selection. The level of DNA sequence divergence between maize and pearl millet Ac sequences, the estimated date when maize and pearl millet diverged (25–40 million years ago), coupled with their reproductive isolation/lack of current genetic exchange, all support the theory that Ac-like sequences have not been recently introduced into pearl millet from maize. Instead, Ac-like sequences were probably present in the progenitor of maize and pearl millet, and have thus existed in the grasses for at least 25 million years. Ac-like sequences may be widely distributed among the grasses. We also present the first 2 Dsl controlling element sequences from teosinte species: Zea luxurians and Zea perennis. A total of 10 Dsl elements had previously been sequenced from maize and a distant maize relative, Tripsacum. When a maximum likelihood network of genetic relationships is constructed for all 12 sequenced Dsl elements, the 2 teosinte Dsl elements are as distant from most maize Dsl elements and from each other, as the maize Dsl elements are from one another. Our new teosinte sequence data support the previous conclusion that Dsl elements have been accumulating mutations independently since maize and Tripsacum diverged. We present a scenario for the origin of Dsl elements.  相似文献   

12.
13.
The autonomous transposon Activator (Ac) is a powerful mutagen. Ac-induced mutations range from small footprints of host sequences to large rearrangements of transposon or host sequences. These mutations arise by different repair mechanisms of the double-strand break produced by Ac excision: footprints by nonhomologous end joining and rearrangements by various mechanisms, including DNA replication repair. Footprints greatly outnumber other mutations, masking them because they usually share a nonfunctional phenotype. To determine the spectrum and frequencies of host and self-mutations generated by Ac, we used an allele harboring Ac in the 5′ untranslated region bronze (bz). In this system, simple excisions produce purple revertants, whereas deletions of host or transposon sequences produce stable bronze (bz-s) mutants. Internal and terminal deletions of Ac predominated among the 72 bz-s derivatives. Most internal deletions (52 of 54) behaved as nonautonomous Dissociation (Ds) elements. All nine terminal deletions or fractured Ac (fAc) elements had rearrangements of adjacent host sequences. Most Ds and fAc deletion junctions displayed microhomologies and contained filler DNA from nearby sequences, suggesting an origin by DNA repair synthesis followed by microhomology-mediated end joining. All mutations occurred more frequently in pollen, where one in 200 grains carried new Ds or fAc elements.  相似文献   

14.
A pilot-scale transposon mutagenesis experiment using a modified autonomous Activator (Ac) element, AcΔNael, was carried out in Arabidopsis thaliana. Four different transformants carrying Ac elements in different and defined genomic locations were used to generate 1000 plants carrying approximately 500 independent germinal transposition events. These plants were then selfed and the 1000 families screened in tissue culture and soil for phenotypic mutants. Fifty different families segregated mutations in their progeny. Preliminary Southern blot analysis of 29 families which segregated mutant progeny, showed that 28 had a transposed Ac. Six of the families were further tested for linkage between the transposed Ac and the mutant phenotype, and instability of the putatively tagged locus. Two of the mutants were shown to be tagged as they were tightly linked to a transposed Ac, and somatic and germinal reversion was associated with loss of Ac. One other mutant locus was shown to be closely linked to a transposed Ac, and therefore was likely to be tagged. The remaining three mutations were not tagged as they were not linked to a transposed Ac. In two of the tagged mutants Ac had transposed to closely linked sites, while in a third mutant the co-segregating Ac had transposed to a site which was not tightly linked to the donor T-DNA. Multiple insertions into the DIF1 locus were found, due to the preferential transposition of Ac to a linked site.  相似文献   

15.
A modified hobo element from Drosophila melanogaster was introduced into embryos of the housefly, Musca domestica (family Muscidae) and the Queensland fruitfly, Bactrocera tryoni (family Tephritidae) to assess its ability to transpose. Hobo was capable of transposition in these species and transposition products had all of the hallmarks of hobo transposition products recovered from D. melanogaster, including the movement only of sequences precisely delimited by the inverted terminal repeats of hobo, the creation of an 8 by duplication of the insertion site and an absolute requirement for hobo-encoded transposase. Transposition of hobo into the target gene resulted in a non-random distribution of insertion sites, with 10 of 38 independent insertions into the same nucleotide position. The results indicate that hobo can transpose in heterologous species, further demonstrating the similarty of hobo to Ac (Activator) of Zea mays and Tam3 of Antirrhinum majus. Hobo has excellent potential to act as a gene vector or gene tagging agent in nondrosophilid insects.  相似文献   

16.
The transposition frequency of the hobo mobile element in four successive generations of Drosophila melanogaster strain y 2-717 after an acute γ-irradiation with a dose of 30 Gr amounted to 7.5 × 10?4 per site per genome per generation. Under the same conditions, PCR analysis of the genomic DNA of y 2-717 flies detected new variants of defective hobo sequence. No changes in the hobo localization and PCR products compared with the control were detected in the case of single irradiation with doses of 3 and 30 Gr. The localizations of hobo element on polytene chromosomes of y 2-717 strain did not change during 11 generations after five exposures of flies to 30 Gr. Irradiation of a highly unstable D. melanogaster strain y +743 did not increase the number of families with mutant progeny, yet increased the total number of mutant descendants almost twofold, from 5 to 9%.  相似文献   

17.
Recent completion of rice genome sequencing has revealed that more than 40% of its genome consists of repetitive sequences, and most of them are related to inactive transposable elements. In the present study, a transposable element, nDaiZ0, which is induced by tissue culture with high frequency, was identified by sequence analysis of an allelic line of the golden hull and internode 2 (gh2) mutant, which was integrated into the forth exon of GH2. The 528-bp nDaiZ0 has 14-bp terminal inverted repeats (TIRs), and generates an 8-bp duplication of its target sites (TSD) during its mobilization. nDaiZs are non-autonomous transposons and have no coding capacity. Bioinformatics analysis and southern blot hybridization showed that at least 16 copies of nDaiZ elements exist in the japonica cultivar Nipponbare genome and 11 copies in the indica cultivar 93-11 genome. During tissue culture, only one copy, nDaiZ9, located on chromosome 5 in the genome of Nipponbare can be activated with its transposable frequency reaching 30%. However, nDaiZ9 was not present in the 93-11 genome. The larger elements, DaiZs, were further identified by database searching using nDaiZ0 as a query because they share similar TIRs and subterminal sequences. DaiZ can also generate an 8-bp TSD. DaiZ elements contain a conserved region with a high similarity to the hAT dimerization motif, suggesting that the nDaiZ–DaiZ transposon system probably belongs to the hAT superfamily of class II transposons. Phylogenetic analysis indicated that it is a new type of plant hAT-like transposon. Although nDaiZ is activated by tissue culture, the high transposable frequency indicates that it could become a useful gene tagging system for rice functional genomic studies. In addition, the mechanism of the high transposable ability of nDaiZ9 is discussed.  相似文献   

18.
Handler AM 《Genetica》2003,118(1):17-24
A new hopper element belonging to the hAT transposon family was isolated from the white eye mutant strain of the Oriental fruit fly, Bactrocera dorsalis. Using the original hopper element sequence from the wild type Kahuku strain as a template, the new hopper was isolated by inverse and direct PCR. Nucleotide sequence analysis reveals a 3131 bp element with terminal and subterminal inverted repeat sequences, an 8 bp duplicated insertion site, and a conceptual translation yielding a single uninterrupted 650 amino acid open reading frame. The white eye hopper has structure more consistent with function than the Kahuku element, indicating that hopper is not an ancient relic. The hopper element remains distantly related to other known hAT elements including those from insects, and presently it is most similar to Activator-related elements discovered in the human genome. DNA hybridization studies indicate, however, that elements closely related to hopper exist in another bactrocerid species, the melonfly, B. cucurbitae.  相似文献   

19.
The hobo transposon is responsible for one of the three hybrid dysgenic systems that have been described in Drosophila melanogaster. Most studies on the hobo dysgenic system have been carried out using the PM system as a reference. However, these two systems differ significantly. In particular, several studies have failed to find any correlation between the molecular structures of hobo elements, the instability of the transposon and the incidence of gonadal dysgenic (GD) sterility. On the other hand, no study of the ability of females to permit hobo activity in their progeny when they are crossed with males harboring active hobo elements (permissivity) has yet been reported. In order to investigate the parameters involved in hobo permissivity, four E strains were studied with regard to the molecular nature of their hobo sequences and the GD sterility induced by a controlled source of hobo transposase. We show that hobo permissivity varies both within and between E strains. Moreover, permissivity decreases with age in E females. Our results are discussed with respect to similar phenomena that have been described in relation to the reactivity of the IR dysgenic system.  相似文献   

20.
A hobo-related sequence, Cchobo, with high similarity to the Drosophila melanogaster HFL1 and hobo108 elements was isolated from the medfly. Thirteen PCR-derived clones, which share 97.9–100% DNA identity, were sequenced, seven of which do not show frame-shift or stop codon mutations in their conceptual translations. The consensus sequence has 99.7% DNA identity with the D. melanogaster hobo element HFL1. In a phylogenetic analysis with other hobo-related elements, Cchobo clusters with the HFL1 and hobo108 elements from D. melanogaster and hobo-related elements from D. simulans, D. mauritiana and Mamestra brassicae. These elements may have undergone horizontal transfer in the recent past. The genomic distribution of Cchobo was studied by FISH to mitotic and polytene chromosomes, which revealed that Cchobo is distributed within both the heterochromatin and euchromatin. Intra- and interstrain polymorphisms were detected both at euchromatic and heterochromatic sites. These findings suggest that active copies of the element may be present in the medfly genome.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号