首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
The role of bacteriophage T4 gene 46 in recombination between non-replicating chromosomes was examined. DNA was extracted from Escherichia coli B infected with a mixture of [3H]thymidine-labeled and (13C, 15N)-labeled T4 multiple mutants under non-permissive conditions. The densities of extracted, purified DNAs were determined by neutral cesium sulfate density-gradient centrifugation. When the phage was a double mutant defective in both DNA ligase and DNA polymerase genes, a considerable portion of the 3H label was found at a hybrid density. By contrast, when phage had a third mutation in gene 46, the amount of 3H label found at the hybrid position was greatly reduced. These findings indicate that hybrid molecule formation requires the function of gene 46.  相似文献   

3.
4.
During the last 50 years, major advances in molecular biology and biotechnology have been attributed to the discovery of enzymes that allow molecular cloning of important genes. One of these enzymes that has been widely acknowledged for its role in the development of biotechnology is the T4 DNA ligase. This enzyme joins the break in the DNA backbone structure by creating a phosphodiester bond between 5′ PO4 and 3′ OH ends, in an ATP dependent multi-step reaction, thus allowing the ligation of related and foreign DNA sequences. Due to its role in modern DNA recombinant technology, there is a high demand on DNA ligase to allow the ligation of target DNA inserts into a chosen vector as part of DNA cloning technology. To closely look at ligase sequence diversity, a bacteriophage that infects DH5α (commercial lab strain of Escherichia coli) was isolated from sewage system in Hebron, Palestine. The DNA ligase gene of this phage was cloned and its sequence was compared to the NCBI database. The new bacteriophage ligase, named (South Hebron Phage, SHPh) DNA ligase, shows homology to T even bacteriophage DNA ligases posted in the NCBI database with 35 nucleotide differences, an indication of existed diversity among T even DNA ligation enzymes that can be used as markers in phage classification.  相似文献   

5.
The T4D bacteriophage gene 28 product is a component of the central plug of the tail baseplate, as shown by the following two independent lines of evidence. (i) A highly sensitive method for radioactive labeling of only tail baseplate plug components was developed. These labeled plug components were incorporated by a complementation procedure into new phage particles and were analyzed by radioautography after sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Three new structural proteins were found in addition to the three known tail plug proteins (i.e., gP29, gP27, and gP5). One of the three newly identified components had a molecular weight of 24,000 to 25,000 and appeared to be a product of T4D gene 28. (ii) Characterization of mutants of Escherichia coli bacteriophage T4D which produced altered gene 28 products also indicated that the gene 28 product was a viral tail component. T4D 28ts phage particles produced at the permissive temperature had altered heat labilities compared with parent T4D particles. We isolated a single-step temperature revertant of T4D 28ts and found that it produced phage particles which phenotypically resembled the original T4D particles. Since the properties of the phage baseplate components usually determine heat lability, these two changes in physical stability after two sequential single mutations in gene 28 supported the other evidence that the gene 28 product was a viral baseplate component. Also, compared with parent T4D particles, T4D 28ts and T4D 28am viral particles adsorbed at different rates to various types of host cells. In addition, T4D 28ts particles exhibited a different host range than parent T4D particles. This T4D mutant formed plaques with an extremely low efficiency on all E. coli K-12 strains tested. We found that although T4D 28ts particles adsorbed rapidly and irreversibly to the E. coli K-12 strains, as judged by gene rescue experiments, these particles were not able to inject their DNA into the E. coli K-12 strains. On the other hand, the T4D 28ts revertant had a plating efficiency on E. coli K-12 strains that was quite similar to the plating efficiency of the original parent, T4D. These properties of phage particles containing an altered gene 28 product supported the analytical finding that the gene 28 product is a structural component of the central plug of the T4D tail baseplate. They also indicated that this component plays a role in both host cell recognition and viral DNA injection.  相似文献   

6.
Topoisomerases are enzymes that alter the topological properties of DNA. Phage T4 encodes its own topoisomerase but it can also utilize host-encoded topoisomerases. Here we characterized 55.2, a phage T4 predicted ORF of unknown function. High levels of expression of the cloned 55.2 gene are toxic in E. coli. This toxicity is suppressed either by increased topoisomerase I expression or by partial inactivation of the ATPase subunit of the DNA gyrase. Interestingly, very low-level expression of 55.2, which is non-lethal to wild type E. coli, prevents the growth of a deletion mutant of the topoisomerase I (topA) gene. In vitro, gp55.2 binds DNA and blocks specifically the relaxation of negatively supercoiled DNA by topoisomerase I. In vivo, expression of gp55.2 at low non-toxic levels alters the steady state DNA supercoiling of a reporter plasmid. Although 55.2 is not an essential gene, competition experiments indicate that it is required for optimal phage growth. We propose that the role of gp55.2 is to subtly modulate host topoisomerase I activity during infection to insure optimal T4 phage yield.  相似文献   

7.
Previous studies have shown that the v gene of bacteriophage T4 codes for an endonuclease that specifically attacks pyrimidine dimer sites in UV-irradiated DNA. The present studies have examined the role of this endonuclease in the repair of DNA damaged by nitrogen mustard, N-methyl-N′-nitro-N-nitrosoguanidine (NTG), mitomycin C and 4-nitroquinoline-N-oxide. The observation by Harm that the v gene product of phage T4 facilitates repair of UV damage to the host DNA of excision-repair defective strains enabled us to test whether it does the same with other cellular DNA lesions. It was shown that infection of UV-irradiated E. coliBs−1 with UV-inactivated phage T4v+ resulted in rescue of a certain fraction of the host cells. However no v gene mediated repair E. coli Bs−1 was observed following treatment with the chemical agents mentioned. Furthermore, though phage T4v1 is more sensitive to UV-irradiation than phage T4, there was no observed difference in the sensitivity of these phages to nitrogen mustard or NTG. On the basis of these observations it was concluded that the v gene coded endonuclease of T4 is specific for the excision repair of pyrimidine dimers and does not participate in the repair of chemically damaged DNA. In vitro enzymatic degradation of DNA alkylated with nitrogen mustard was observed, but it is probable that this degradation is not part of a repair reaction in vivo.  相似文献   

8.
We have constructed derivatives of plasmid pMB9 carrying EcoRI digestion fragments of bacteriophage T4 DNA that code for late gene functions. When Escherichia coli strains carrying these plasmids are infected with T4 amber mutants, burst sizes up to 30% of the wild-type level are obtained. Single burst experiments imply that the phage progeny result from complementation and do not depend on marker rescue. By electrophoretic and immunological techniques, we have established that the cloned T4 late genes are transcribed and translated in uninfected cells. A serum blocking assay has been used to quantitate the levels of one of the T4 gene products, gp11, before and after T4 infection. Uninfected cells containing the cloned T4 gene 11 DNA have 0.1% and mini cells have 1% of the gp11 levels per unit protein found in cells late after T4 wild-type infection. There is little or no additional gp10 and gp11 formed from the cloned genes after T4 infection.  相似文献   

9.
An extensive screening of coliphage T4 mutants has revealed two distinct classes defective, respectively, in the two sequential phage-induced phosphorylations of the host RNA polymerase, alteration and modification. The existence of these mutants proves that T4-specified functions are involved in both processes. The viabilities of these mutants demonstrate that neither alteration nor modification is essential for growth in Escherichia coli B/r. Physiological studies after infection of E. coli B/r have failed to reveal any abnormalities of phage deficient in alteration or modification. Both mutants normally inhibit host protein and stable RNA synthesis and normally express all classes of T4 genes. Thus, these specific phage-induced structural changes in the host RNA polymerase are not fundamental to the control of gene expression during T4 development. Alteration and modification may be required for growth in some strains of E. coli and hence be selectively advantageous because they extend the normal host range of the phage.Alteration appears to be catalyzed by a T4 function injected with the DNA. A polypeptide of molecular weight 61,000, which is probably cleaved during morphogenesis from a precursor of molecular weight 79,000, is missing in phage particles of alteration-deficient strains and may be the phage activity so injected. The T4 gene involved in alteration is named alt.Modification is controlled by a T4-replicative gene that has been mapped into a region of about 500 base-pairs between genes 39 and 56. These mapping data show that the defect in α modification defines a new T4 gene, named mod.  相似文献   

10.
We describe a new method of gene cloning by complementation of mutant alleles which obviates the need for construction of a gene library in a plasmid vector in vitro and its amplification in Escherichia coli. The method involves simultaneous transformation of mutant strains of the fungus Aspergillus nidulans with (i) fragmented chromosomal DNA from a donor species and (ii) DNA of a plasmid without a selectable marker gene, but with a fungal origin of DNA replication (‘helper plasmid’). Transformant colonies appear as the result of the Joining of chromosomal DNA fragments carrying the wild-type copies of the mutant allele with the helper plasmid. Joining may occur either by ligation (if the helper plasmid is in linear form) or recombination (if it is cccDNA). This event occurs with high efficiency in vivo, and generates an autonomously replicating plasmid cointegrate. Transformants containing Penicillium chrysogenum genomic DNA complementing A. nidulans niaD, nirA and argB mutations have been obtained. While some of these cointegrates were evidently rearranged or consisted only of unaltered replicating plasmid, in other cases plasmids could be recovered into E. coli and were subsequently shown to contain the selected gene. The utility of this “instant gene bank” technique is demonstrated here by the molecular cloning of the P. canescens trpC gene.  相似文献   

11.
Linear DNAs of any sequence can be packaged into empty viral procapsids by the phage T4 terminase with high efficiency in vitro. Packaging substrates of 5 kbp and 50 kbp, terminated by energy transfer dye pairs, were constructed from plasmid and λ phage DNAs. Nuclease and fluorescence correlation spectroscopy (FCS) assays showed that ∼ 20% of the substrate DNA was packaged and that the DNA dye ends of the packaged DNA were protected from nuclease digestion. Upon packaging, both 5-kbp and  50-kbp DNAs produced comparable fluorescence resonance energy transfer (FRET) between Cy5 and Cy5.5 double-dye terminated DNAs. Single-molecule FRET (sm-FRET) and photobleaching analysis shows that FRET is intramolecular rather than intermolecular upon packaging of most procapsids and demonstrates that single-molecule detection allows mechanistic analysis of packaging in vitro. FRET-FCS and sm-FRET measurements are comparable and show that both the 5-kbp and the  50-kbp packaged DNA ends are held within 8-9 nm of each other, within the dimensions of the long axis of the procapsid portal. The calculated distribution of FRET distances is relatively narrow for both FRET-FCS and sm-FRET, suggesting that the two packaged DNA ends are held at the same fixed distance relative to each other in most capsids. Because one DNA end is known to be positioned for ejection through the portal, it can be inferred that both DNAs ends are held in proximity to the portal entrance and ejection channel. The analysis suggests that a DNA loop, rather than a DNA end, is translocated by the packaging motor to fill the procapsid.  相似文献   

12.
Wild-type bacteriophage T4 and DNA-delay am mutants defective in genes 39, 52, 60 and 58–61 were tested for intracellular sensitivity to the antibiotics coumermycin and novobiocin, drugs which inhibit the DNA gyrase of Escherichia coli. Treatment with these antibiotics drastically reduced the characteristic growth of gene 39, 52 and 60 DNA-delay am mutants in E. coli lacking an amber suppressor (su?). Wild-type phage-infected cells were unaffected by the drugs while the burst size of a gene 58–61 mutant was affected to an intermediate extent. A su?E. coli strain which is resistant to coumermycin due to an altered gyrase permitted growth of the DNA-delay am mutants in the presence of the drug. Thus, the characteristic growth of the DNA-delay am mutants in an su? host apparently depends on the host gyrase. An E. coli himB mutant is defective in the coumermycin-sensitive subunit of gyrase (H. I. Miller, personal communication). Growth of the gene 39, 52 and 60 am mutants was inhibited in the himB mutant while the gene 58–61 mutant and wild-type T4 showed small reductions in burst size in this host. Experiments with nalidixic acid-sensitive and resistant strains of E. coli show that wild-type phage T4 requires a functional nalA protein for growth.Novobiocin and coumermycin inhibit phage DNA synthesis in DNA-delay mutant-infected su?E. coli if added during the early logarithmic phase of phage DNA synthesis. The gene 58–61 mutant showed the smallest inhibition of DNA synthesis in the presence of the drugs. Addition of the drugs during the late linear phase of phage DNA synthesis had no effect on further synthesis in DNA-delay mutant-infected cells. Coumermycin and novobiocin had no effect on DNA synthesis in wild-type-infected cells regardless of the time of addition of the antibiotics. Models are considered in which the DNA-delay gene products either form an autonomous phage gyrase or interact with the host gyrase and adapt it for proper initiation of phage DNA replication.  相似文献   

13.
Analysis of molecular events in T4-infected Escherichia coli has revealed some of the most important principles of biology, including relationships between structures of genes and their products, virus-induced acquisition of metabolic function, and morphogenesis of complex structures through sequential gene product interaction rather than sequential gene activation. T4 bacteriophages and related strains were applied in the first formulations of many fundamental biological concepts. These include the unambiguous recognition of nucleic acids as the genetic material, the definition of the gene by fine-structure mutation, recombinational and functional analyses, the demonstration that the genetic code is triplet, the discovery of mRNA, the importance of recombination and DNA replications, light-dependent and light-independent DNA repair mechanisms, restriction and modification of DNA, self-splicing of intron/exon arrangement in prokaryotes, translation bypassing and others. Bacteriophage T4 possesses unique features that make it a good tool for a multicomponent vaccine platform. Hoc/Soc-fused antigens can be assembled on the T4 capsid in vitro and in vivo. T4-based phage display combined with affinity chromatography can be applied as a new method for bacteriophage purification. The T4 phage display system can also be used as an attractive approach for cancer therapy. The data show the efficient display of both single and multiple HIV antigens on the phage T4 capsid and offer insights for designing novel particulate HIV or other vaccines that have not been demonstrated by other vector systems.  相似文献   

14.
In Escherichia coli K-12 strains infected with phage T4 which is defective in gene 30 [deoxyribonucleic acid (DNA) ligase] and in the rII gene (product unknown), near normal levels of DNA and viable phage were produced. Growth of such T4 ligase-rII double mutants was less efficient in E. coli B strains which show the "rapidlysis" phenotype of rII mutations. In pulse-chase experiments coupled with temperature shifts and with inhibition of DNA synthesis, it was observed that DNA synthesized by gene 30-defective phage is more susceptible to breakdown in vivo when the phage is carrying a wild-type rII gene. Breakdown was delayed or inhibited by continued DNA synthesis. Mutations of the rII gene decreased but did not completely abolish the breakdown. T4 ligase-rII double mutants had normal sensitivity to ultraviolet irradiation.  相似文献   

15.
Recombinant phages between T7 and T3 have been isolated that grow well on strains of Escherichia coli that contain the F factor. One phage that has been characterized physically and genetically is predominately of the T7 genotype. Within this hybrid phage, two separate regions of T3 DNA have been located which are necessary for the phenotype of productive growth on F-containing strains. One of these, designated M1, contains the right part of gene 1 and continues through gene 1.3; the second, M2, appears to lie between gene 3 and gene 4.  相似文献   

16.
Early in a bacteriophage T4 infection, the phage ndd gene causes the rapid destruction of the structure of the Escherichia coli nucleoid. Even at very low levels, the Ndd protein is extremely toxic to cells. In uninfected E. coli, overexpression of the cloned ndd gene induces disruption of the nucleoid that is indistinguishable from that observed after T4 infection. A preliminary characterization of this protein indicates that it has a double-stranded DNA binding activity with a preference for bacterial DNA rather than phage T4 DNA. The targets of Ndd action may be the chromosomal sequences that determine the structure of the nucleoid.  相似文献   

17.
Control of bacteriophage T4 DNA polymerase synthesis   总被引:13,自引:0,他引:13  
Analysis of sodium dodecyl sulphate/acrylamide gels of 14C-labelled proteins from phage-infected bacteria suggests the existence of a self-regulatory control mechanism in bacteriophage T4.Infection of Escherichia coli with phage T4 carrying a mutation in gene 43 (which codes for the phage DNA polymerase) results in a greatly increased rate of synthesis of the gene 43 protein. Such overproduction of defective polymerase occurs in restrictive infections with all gene 43 amber and most gene 43 temperature-sensitive mutants tested. Gene 43 protein synthesis in gene 43+ infections or increased synthesis in gene 43? infections appears to require no additional function of other phage proteins essential for DNA synthesis. Functional gene 43 protein is needed continuously to keep its own levels down to normal.  相似文献   

18.
Effect of Prophage W on the Propagation of Bacteriophages T2 and T4   总被引:10,自引:7,他引:3       下载免费PDF全文
Studies have been undertaken to determine whether the temperate phage ω present in Escherichia coli strain W is responsible for the inability of this strain to act as a host for T2 and T4. E. coli WS, cured of phage ω, was sensitive to T2 and T4. Lysogenation of E. coli C and WS with phage ω resulted in loss of ability to plate T2 and T4. However, E. coli K-12 lysogens still served as hosts for the T -even phage. Two of three WS lysogens studied resembled strain W at the biochemical level. They converted about 30% of infecting T2 deoxyribonucleic acid (DNA) to acid-soluble fragments and limited macromolecular synthesis to a few minutes after infection. The third lysogen did not degrade phage DNA, and nucleic acid and protein synthesis continued for some time, although no phage production occurred. It is concluded that phage ω plays a role in the restriction of virulent phage but that it is not the only factor involved. Since acid solubilization was not observed in all cases of phage ω-mediated restriction of T -even phage, a hypothesis for the restriction has been proposed which is based on an alteration in the cell envelope after lysogenation with phage ω.  相似文献   

19.
J. D. Karam  M. Leach    L. J. Heere 《Genetics》1979,91(2):177-189
T4 phage completely defective in both gene 30 (DNA ligase) and the rII gene (function unknown) require at least normal levels of host-derived DNA ligase (E. coli lig gene) for growth. Viable E. coli mutant strains that harbor less than 5% of the wild-type level of bacterial ligase do not support growth of T4 doubly defective in genes 30 and rII (T4 30- rII- mutants). We describe here two classes of secondary phage mutations that permit the growth of T4 30- rII- phage on ligase-defective hosts. One class mapped in T4 gene su30 (Krylov 1972) and improved T4 30- rII- phage growth on all E. coli strains, but to varying degrees that depended on levels of residual host ligase. Another class mapped in T4 gene 32 (helix-destabilizing protein) and improved growth specifically on a host carrying the lig2 mutation, but not on a host carrying another lig- lesion (lig4). Two conclusions are drawn from the work: (1) the role of DNA ligase in essential DNA metabolic processes in T4-infected E. coli is catalytic rather than stoichiometric, and (2) the E. coli DNA ligase is capable of specific functional interactions with components of the T4 DNA replication and/or repair apparatus.  相似文献   

20.
T7 phage was exposed to 56 mM nitrous acid at pH 4.6 causing a 90% decrease in survival for each 10 min duration of exposure. The survival of phage made by encapsulating nitrous acid treated DNA into empty phage heads was nearly the same as the survival of phage exposed to nitrous acid in vivo. In contrast to previous reports, growth of SOS-induced wild-type E. coli showed no increase in survival. The survival of nitrous acid treated phage was not lowered when grown on E. coli strains deficient in DNA polymerase I, exonuclease III, and the uvrA component of the nucleotide excision-repair endonuclease. Therefore, these enzymes are not vital for repair of nitrous acid induced damage in bacteriophage T7.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号