首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We have identified a previously reported open reading frame (ORF13) that maps between pepA and valS at 96.6 centisomes of the Escherichia coli genome as the structural gene for the χ subunit of DNA polymerase III holoenzyme. This conclusion is supported by a perfect match of the amino-terminal 24 residues of χ with the DNA sequence of ORF13 and a demonstration that ORF13 directs expression of a protein that co-migrates with authentic χ on SDS-polyacrylamide gels. ORF13, designated holC, was isolated from the E. coli chromosome and inserted into a tac promoter-based expression plasmid to direct production of the χ subunit to 5–7% of the total soluble protein. The 3′ end of holC was sequenced to resolve discrepancies between two published versions.  相似文献   

2.
3.
In addition to a set of canonical genes, coronaviruses encode additional accessory proteins. A locus located between the spike and envelope genes is conserved in all coronaviruses and contains a complete or truncated open reading frame (ORF). Previously, we demonstrated that this locus, which contains the gene for accessory protein 3a from severe acute respiratory syndrome coronavirus (SARS-CoV), encodes a protein that forms ion channels and regulates virus release. In the current study, we explored whether the ORF4a protein of HCoV-229E has similar functions. Our findings revealed that the ORF4a proteins were expressed in infected cells and localized at the endoplasmic reticulum/Golgi intermediate compartment (ERGIC). The ORF4a proteins formed homo-oligomers through disulfide bridges and possessed ion channel activity in both Xenopus oocytes and yeast. Based on the measurement of conductance to different monovalent cations, the ORF4a was suggested to form a non-selective channel for monovalent cations, although Li+ partially reduced the inward current. Furthermore, viral production decreased when the ORF4a protein expression was suppressed by siRNA in infected cells. Collectively, this evidence indicates that the HCoV-229E ORF4a protein is functionally analogous to the SARS-CoV 3a protein, which also acts as a viroporin that regulates virus production. This article is part of a Special Issue entitled: Viral Membrane Proteins — Channels for Cellular Networking.  相似文献   

4.
5.
6.
The gentamicin-resistance operon of Pseudomonas aeruginosa (aac) contains two cistrons for which only the second gene product has an identified function. The 813bp second cistron (ORF2) encodes a protein that confers gentamicin resistance by catalysis of the transfer of an acetyl group from acetyl Coenzyme A to gentamicin. The first open reading frame (ORF1) encodes a 23.9 kDa protein that we have found, by enzyme activity and immunological reactivity, to be adenosine-5′-phosphosulphate (APS) kinase. APS kinase catalyses the transfer of the gamma phosphoryl group of ATP to the 3′-hydroxyl group of APS. The 70% sequence similarity between the Pseudomonas and Escherichia coli APS kinases suggests that the Pseudomonas enzyme may catalyse phosphoryl transfer to the 3′-hydroxyl group of other nucleotides such as dephosphocoenzyme A, as does the purified E. coli APS kinase. In extracts of pseudomonad cells we have also detected a higher molecular mass (70 kDa) protein that cross-reacts with an anti-E. coli APS kinase antibody. This cross-reactive protein is also present in Pseudomonas strains lacking the gentamicin-resistance plasmid, and apparently reflects an APS kinase analogous to the nodQ-encoded high-molecular-weight APS kinase present in Rhizobium meliloti. Production of the Pseudomonas aac APS kinase was repressed by cysteine when expressed in E. coli, as is E. coli APS kinase. However, cysteine did not repress production of the Pseudomonas enzyme when the aac ORF1 -encoded enzyme was expressed in a Pseudomonas strain, indicating differential regulation of gene expression in the two organisms.  相似文献   

7.
Porcine epidemic diarrhea virus (PEDV) causes severe economic losses in the swine industry in China and other Asian countries. Infection usually leads to an acute, often lethal diarrhea in piglets. Despite the impact of the disease, no system is yet available to manipulate the viral genome which has severely hampered research on this virus until today. We have established a reverse genetics system for PEDV based on targeted RNA recombination that allows the modification of the 3′-end of the viral genome, which encodes the structural proteins and the ORF3 protein. Using this system, we deleted the ORF3 gene entirely from the viral genome and showed that the ORF3 protein is not essential for replication of the virus in vitro. In addition, we inserted heterologous genes (i.e. the GFP and Renilla luciferase genes) at two positions in the viral genome, either as an extra expression cassette or as a replacement for the ORF3 gene. We demonstrated the expression of both GFP and Renilla luciferase as well as the application of these viruses by establishing a convenient and rapid virus neutralization assay. The new PEDV reverse genetics system will enable functional studies of the structural proteins and the accessory ORF3 protein and will allow the rational design and development of next generation PEDV vaccines.  相似文献   

8.
9.
The effect of two Escherichia coli expression strains on the production of recombinant human protein fragments was evaluated. High-throughput protein production projects, such as the Swedish Human Protein Atlas project, are dependent on high protein yield and purity. By changing strain from E. coli BL21(DE3) to E. coli Rosetta(DE3) the overall success rate of the protein production has increased dramatically. The Rosetta(DE3) strain compensates for a number of rare codons. Here, we describe how the protein expression of human gene fragments in E. coli strains BL21(DE3) and Rosetta(DE3) was evaluated in two stages. Initially a test set of 68 recombinant proteins that previously had been expressed in BL21(DE3) was retransformed and expressed in Rosetta(DE3). The test set generated very positive results with an improved expression yield and a significantly better purity of the protein product which prompted us to implement the Rosetta(DE3) strain in the high-throughput protein production. Except for analysis of protein yield and purity the sequences were also analyzed regarding number of rare codons and rare codon clusters. The content of rare codons showed to have a significant effect on the protein purity. Based on the results of this study the atlas project permanently changed expression strain to Rosetta(DE3).  相似文献   

10.
The chitinase Chi58 is an extracellular chitinase produced by Sanguibacter sp.strain C4. The gene-specific PCR primers were used to detect the presence of the chiA gene in strain C4. A chiA fragment (chiA-F) was amplified from the C4 genomic DNA and was used to blast-search the related sequences from the GenBank dadabase. By alignment and selection of the highly conserved regions of the homologous sequences, two pairs of primers were designed to amplify the open reading frame (ORF) of the chitinase from strain C4 by nested PCR. The results revealed that the Chi58 ORF consisted of 1 692 nucleotides encoding a protein of 563 amino acid residues. The molecular weight of the mature protein was predicted to be 58.544 kDa. The Chi58 ORF was a modular enzyme composed of a signal peptide sequence, a polycystic kidney disease I domain, and a glycosyl hydrolase family 18 domain. The chitinase of C4 exhibited a high level of similarity to the chitinase A of Serratia (88.9%-99.6%) at the amino acid sequence level. The Chi58 gene was cloned into the expression vector pET32a to construct the recombinant plasmid pChi58 and was expressed in E. coli BL-21 (DE3) cells with IPTG induction. The molecular weight of the Trx-Chi58 fusion protein was estimated to be 81.1 kDa by SDS-PAGE.  相似文献   

11.
Cystatins (CSTs) are reversible and competitive inhibitors of cysteine proteases. Some polydnaviruses encode viral CSTs that have been speculated to play a crucial role in viral pathology. Four CSTs have been reported in the episomal genome of a polydnavirus, Cotesia plutellae (synonymous with C. vestalis) bracovirus (CpBV). These 4 CSTs share high sequence homologies with other bracoviral CSTs. Further sequence analysis showed that 2 of the CpBV-CSTs are identical. The remaining 3 CSTs have been designated CpBV-CST1, CpBV-CST2, and CpBV-CST3. Expression analysis indicated that CpBV-CST2 was not expressed in any stage of Plutella xylostella, either parasitized or non-parasitized by C. plutellae. However, both CpBV-CST1 and CpBV-CST3 were expressed in all stages of P. xylostella. Interestingly, these 2 genes were also expressed in non-parasitized P. xylostella in all developmental stages. A CST sequence from the non-parasitized larva was 100% identical with that of CpBV-CST1 for the entire open reading frame (ORF). To understand the role of CpBV-CST1 in viral pathology, the ORF was cloned into a eukaryotic expression vector and transiently expressed in non-parasitized larvae. The in vivo transient expression lasted for at least 4 days. Under this condition, the treated larvae suffered significant suppression in immune responses and in development. These results suggest that CpBV-CSTs play a crucial role in parasitism, altering host immune and developmental processes by interrupting normal interactions between CSTs and cysteine proteases in P. xylostella.  相似文献   

12.
13.
Enterocin AS-48 is a cyclic peptide produced by Enterococcus faecalis S-48 whose genetic determinants have been identified in the conjugative plasmid pMB2. A region of 7.8 kb, carrying the minimum information required for production of and immunity against AS-48, had been previously cloned and sequenced in pAM401 (pAM401-52). In this region, the as-48A structural gene and as-48B, as-48C, as-48C1, as-48D, and as-48D1 genes and open reading frame 6 (ORF6) and ORF7 had been identified. The sequence analysis carried out in this work in the BglII B fragment (6.6-kb) from pMB2 cloned downstream from the last ORF identified (ORF7) revealed the existence of two new ORFs, as-48G and as-48H, necessary for full AS-48 expression. Thus, JH2-2 transformants obtained with the pAM401-81 plasmid became producers and resistant at the wild-type level. Tn5 disruption experiments in the last genes, as-48EFGH, were not able to reproduce these expression levels, confirming that expression of these genes is necessary to get the phenotype conferred by the wild-type pMB2 plasmid. The as-48EFGH operon encodes a new ABC transporter that could be involved in producer self-protection. On the basis of the observed similarities, As-48G would be the ATP-binding domain, the deduced amino acid sequences of As-48E and As48-H could be assigned as transmembrane subunits, and As-48F, with an N-terminal transmembrane segment and a coiled-coil domain, strongly resembles the structure of some known ABC transporter accessory proteins whose localization in the cell is discussed. This cluster of genes is expressed by two polycistronic mRNAs, T2 and T3, in JH2-2(pAM401-81) in coordinate expression. Our results also suggest that expression of T3 could be regulated, because in JH2-2(pAM401EH) transformants, T3 was not detected, suggesting that these genes do not by themselves confer immunity, in accordance with the requirement for the as-48D1 gene for immunity against AS-48.  相似文献   

14.
Porcine reproductive and respiratory syndrome virus (PRRSV) is a member within the family Arteriviridae of the order Nidovirales. Replication of this positive-stranded RNA virus within the host cell involves expression of viral replicase proteins encoded by two ORFs, namely ORF1 a and ORF1 b. In particular, translation of ORF1 b depends on a-1-ribosomal frameshift strategy. Thus, nonstructural protein 9 (nsp9), the first protein within ORF1 b that specifies the function of the viral RNA-dependent RNA polymerase, is expressed as the C-terminal extension of nsp8, a small nsp that is encoded by ORF1 a. However, it has remained unclear whether the mature form of nsp9 in virus-infected cells still retains nsp8,addressing which is clearly critical to understand the biological function of nsp9. By taking advantage of specific antibodies to both nsp8 and nsp9, we report the following findings. (1) In infected cells, PRRSV nsp9 was identified as a major product with a size between 72 and 95 k Da (72–95 KDa form), which exhibited the similar mobility on the gel to the in vitro expressed nsp8–9 ORF1 b, but not the ORF1 b-coded portion (nsp9 ORF1 b). (2) The antibodies to nsp8, but not to nsp7 or nsp10, could detect a major product that had the similar mobility to the 72–95 KDa form of nsp9. Moreover, nsp9 could be co-immunoprecipitated by antibodies to nsp8, and vice versa. (3) Neither nsp4 nor nsp2 PLP2 was able to cleave nsp8–nsp9 in vitro. Together, our studies provide experimental evidence to suggest that nsp8 is an N-terminal extension of nsp9.Our findings here paves way for further charactering the biological function of PRRSV nsp9.  相似文献   

15.

Background

The polyamines putrescine, spermidine, and spermine are organic cations that are required for cell growth and differentiation. Ornithine decarboxylase (ODC), the first and rate-limiting enzyme in the polyamine biosynthetic pathway, is a highly regulated enzyme.

Methodology and Results

To use this enzyme as a potential drug target, the gene encoding putative ornithine decarboxylase (ODC)-like sequence was cloned from Entamoeba histolytica, a protozoan parasite causing amoebiasis. DNA sequence analysis revealed an open reading frame (ORF) of ∼1,242 bp encoding a putative protein of 413 amino acids with a calculated molecular mass of 46 kDa and a predicted isoelectric point of 5.61. The E. histolytica putative ODC-like sequence has 33% sequence identity with human ODC and 36% identity with the Datura stramonium ODC. The ORF is a single-copy gene located on a 1.9-Mb chromosome. The recombinant putative ODC protein (48 kDa) from E. histolytica was heterologously expressed in Escherichia coli. Antiserum against recombinant putative ODC protein detected a band of anticipated size ∼46 kDa in E. histolytica whole-cell lysate. Difluoromethylornithine (DFMO), an enzyme-activated irreversible inhibitor of ODC, had no effect on the recombinant putative ODC from E. histolytica. Comparative modeling of the three-dimensional structure of E. histolytica putative ODC shows that the putative binding site for DFMO is disrupted by the substitution of three amino acids—aspartate-332, aspartate-361, and tyrosine-323—by histidine-296, phenylalanine-305, and asparagine-334, through which this inhibitor interacts with the protein. Amino acid changes in the pocket of the E. histolytica enzyme resulted in low substrate specificity for ornithine. It is possible that the enzyme has evolved a novel substrate specificity.

Conclusion

To our knowledge this is the first report on the molecular characterization of putative ODC-like sequence from E. histolytica. Computer modeling revealed that three of the critical residues required for binding of DFMO to the ODC enzyme are substituted in E. histolytica, resulting in the likely loss of interactions between the enzyme and DFMO.  相似文献   

16.
Hepatitis E virus genotype 1 strain Sar55 replicated in subcloned Caco-2 intestinal cells and Huh7 hepatoma cells that had been transfected with in vitro transcribed viral genomes, and hepatitis E virions were released into the culture medium of both cell lines. Virus egress from cells depended on open reading frame 3 (ORF3) protein, and a proline-rich sequence in ORF3 was important for egress from cultured cells and for infection of macaques. Both intracellular ORF3 protein accumulation and virus release occurred at the apical membrane of polarized Caco-2 cells. ORF3 protein and lipids were intimately associated with virus particles produced in either cell line; ORF2 epitopes were masked in these particles and could not be immunoprecipitated with anti-ORF2.Hepatitis E virus (HEV) remains enigmatic in spite of recent advances (see references 7 and 16 for reviews). HEV is a major cause of acute hepatitis in numerous developing countries, but hepatitis E is infrequently detected in industrialized countries even though seroprevalence rates of anti-HEV as high as 20% in these countries have been reported. Although hepatitis E normally is a self-limited acute disease, recent studies have identified it as an emerging cause of chronic hepatitis in immunocompromised patients. Whereas contaminated drinking water is the source of most infections in developing countries, the sources in industrialized countries are not fully evaluated, but many, if not most, infections appear linked to eating undercooked meat, especially pork. These differences in epidemiology may reflect the fact that most infections in developing countries are caused by genotypes 1 and 2 while those in industrialized countries are mainly due to genotypes 3 and 4.HEV was initially classified as a calicivirus, but subsequent sequence analysis suggested that it was more closely related to the enveloped rubella virus. However, although HEV may be associated with lipids under some conditions (22), HEV virions do not possess an envelope. Four genotypes of HEV that infect humans have been identified (4). Genotypes 1 and 2 infect primates exclusively, whereas genotypes 3 and 4 are zoonotic and commonly also infect swine and rarely other nonprimates. Recent identification of a strain infecting farmed rabbits in China suggests that other reservoirs may exist (32).The capsid protein encoded by open reading frame 2 (ORF2) is able to form infectious virus particles, but these particles remain cell associated. The crystal structure of a truncated recombinant protein has been solved, but the size of the protein in mature virions is unknown (11, 15, 28, 31). The virus is not cytopathic, and it is unclear how it gets out of cells.The 7.2-kb genome of HEV is a capped mRNA that contains three ORFs that encode proteins involved in replication (ORF1), a capsid protein (ORF2), and a small protein of only 113 to 114 amino acids (ORF3). All but the 5′ terminus of ORF3 is overlapped by ORF2, and both proteins are translated from the same bicistronic subgenomic RNA (10). When overexpressed in cell culture, ORF2 is glycosylated, and ORF3 is phosphorylated (26); this phosphorylated ORF3 protein binds to nonglycosylated ORF2 protein in cell culture, but phosphorylation is not required for infection of macaques (9). The virus has been exceedingly difficult to propagate in cell culture, but recently Okamoto and colleagues reported the successful adaptation of both a genotype 3 and a genotype 4 strain to efficient growth in cultures of PLC/PRF/5 hepatoma or A549 lung cells (23, 24).The tiny ORF3 protein is particularly intriguing because it has a significant impact on virus propagation through mechanisms that have yet to be defined. Data from experiments performed with overexpressed ORF3 protein have suggested that, among other things, ORF3 may interact with cellular proteins, including signaling proteins containing Src homology 3 domains (14), bikunin (27), hemopexin (21), and microtubule proteins (13), and it may function to modulate the acute-phase disease response (3), protect cells from mitochondrial depolarization (18), and enhance expression of glycolytic pathway enzymes (17). Yet within transfected hepatoma cells in culture, virions of an ORF3 null mutant of genotype 1 were assembled in the absence of ORF3 protein and were infectious for naïve hepatoma cells (6) although this same ORF3 null mutant was unable to mount a detectable infection in rhesus monkeys (8). Also, swine transfected with genotype 3 mutant genomes encoding a truncated ORF3 protein did not get infected, indicating that an intact ORF3 protein is needed for infectivity in vivo (12). This lack of infectivity in vivo is possibly explained by the recent demonstration that the ORF3 protein of genotype 3 virus is important for export of virions out of cultured cells in vitro (30); however, this dependence on ORF3 for virion egress has not been confirmed in vivo or for strains of the other three genotypes.The four major genotypes of human HEV appear to segregate naturally into two distinct groups. One group contains genotype 1 and 2 strains that lack a zoonotic component and are spread mainly via contaminated water; in contrast, the second group contains genotype 3 and 4 strains which are able to cross species boundaries and are zoonotic since humans have been infected as a result of eating undercooked meat (16, 25). The molecular basis for the two groupings is unknown, and much more extensive comparative analyses are required to determine which variables are epidemiologically relevant. Here, for lack of an efficient cell culture system for genotype 1 or 2 strains, we have utilized an infectious cDNA clone of a genotype 1 strain in order to explore the role of the ORF3 protein in this group.  相似文献   

17.
A small cryptic plasmid, namely, pCBM588, was obtained from Clostridium butyricum MIYAIRI 588 (CBM588) — a bacterium used in probiotics. The complete sequence of pCBM588 was determined. The size of pCBM588 was 8060 bp and the G + C content was 24.3%. Nine open reading frames (ORFs) were predicted, and ORF3 showed significant homologies with a structural bacteriocin gene of Clostridium tyrobutyricum. The putative bacteriocin gene was inserted into the pET21d expression vector in frame; it was expressed as a His-tagged recombinant protein in Escherichia coli BL21 (DE3). A total of 10240 AU of the recombinant bacteriocin were purified from 100 ml of E. coli culture. The bacteriocin was cleaved into 2 portions, and the small C-terminal polypeptide consisting of 83 amino acids possessed bactericidal activity. These results demonstrated that the ORF3 of pCBM588 encoded a bacteriocin, which is identical or very similar to the previously reported butyricin 7423.  相似文献   

18.
C9ORF72-derived dipeptide repeat proteins have emerged as the pathogenic cause of neurodegeneration in amyotrophic lateral sclerosis and frontotemporal dementia (C9-ALS/FTD). However, the mechanisms underlying their expression are not fully understood. Here, we demonstrate that ZNF598, the rate-limiting factor for ribosome-associated quality control (RQC), co-translationally titrates the expression of C9ORF72-derived poly(GR) protein. A Drosophila genetic screen identified key RQC factors as potent modifiers of poly(GR)-induced neurodegeneration. ZNF598 overexpression in human neuroblastoma cells inhibited the nuclear accumulation of poly(GR) protein and decreased its cytotoxicity, whereas ZNF598 deletion had opposing effects. Poly(GR)-encoding sequences in the reporter RNAs caused translational stalling and generated ribosome-associated translation products, sharing molecular signatures with canonical RQC substrates. Furthermore, ZNF598 and listerin 1, the RQC E3 ubiquitin-protein ligase, promoted poly(GR) degradation via the ubiquitin-proteasome pathway. An ALS-relevant ZNF598R69C mutant displayed loss-of-function effects on poly(GR) expression, as well as on general RQC. Moreover, RQC function was impaired in C9-ALS patient-derived neurons, whereas lentiviral overexpression of ZNF598 lowered their poly(GR) expression and suppressed proapoptotic caspase-3 activation. Taken together, we propose that an adaptive nature of the RQC-relevant ZNF598 activity allows the co-translational surveillance to cope with the atypical expression of pathogenic poly(GR) protein, thereby acquiring a neuroprotective function in C9-ALS/FTD.  相似文献   

19.
A monoclonal antibody against Toxoplasma gondii of Tg556 clone (Tg556) blotted a 29 kDa protein, which was localized in the dense granules of tachyzoites and secreted into the parasitophorous vacuolar membrane (PVM) after infection to host cells. A cDNA fragment encoding the protein was obtained by screening a T. gondii cDNA expression library with Tg556, and the full-length was completed by 5''-RACE of 2,086 bp containing an open reading frame (ORF) of 669 bp. The ORF encoded a polypeptide of 222 amino acids homologous to the revised GRA3 but not to the first reported one. The polypeptide has 3 hydrophobic moieties of an N-terminal stop transfer sequence and 2 transmembrane domains (TMD) in posterior half of the sequence, a cytoplasmic localization motif after the second TMD and an endoplasmic reticulum (ER) retrival motif in the C-terminal end, which suggests GRA3 as a type III transmembrane protein. With the ORF of GRA3, yeast two-hybrid assay was performed in HeLa cDNA expression library, which resulted in the interaction of GRA3 with calcium modulating ligand (CAMLG), a type II transmembrane protein of ER. The specific binding of GRA3 and CAMLG was confirmed by glutathione S-transferase (GST) pull-down and immunoprecipitation assays. The localities of fluorescence transfectionally expressed from GRA3 and CAMLG plasmids were overlapped completely in HeLa cell cytoplasm. In immunofluorescence assay, GRA3 and CAMLG were shown to be co-localized in the PVM of host cells. Structural binding of PVM-inserted GRA3 to CAMLG of ER suggested the receptor-ligand of ER recruitment to PVM during the parasitism of T. gondii.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号