首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A novel series of agonists at the benzodiazepine binding site of the GABAA receptor was prepared by functionalizing a known template. Adding substituents to the pyrazolone-oxygen of CGS-9896 led to a number of compounds with selectivities for either α2- or α1-containing GABAA receptor subtypes offering an entry into indications such as anxiety and insomnia. In this communication, structure-activity relationship and efforts to increase in vitro stabilities are discussed.  相似文献   

2.
3.
GABAA receptors that contain either the alpha4- or alpha6-subunit isoform do not recognize classical 1,4-benzodiazepines (BZDs). However, other classes of BZD site ligands, including beta-carbolines, bind to these diazepam-insensitive receptor subtypes. Some beta-carbolines [e.g. ethyl beta-carboline-3-carboxylate (beta-CCE) and methyl 6,7-dimethoxy-4-ethyl-beta-carboline-3-carboxylate (DMCM)] display a higher affinity for alpha4- compared to alpha6-containing receptors. In order to identify the structural determinants that underlie these affinity differences, we constructed chimeric alpha6/alpha4 subunits and co-expressed these with wild-type rat beta2 and gamma2L subunits in tsA201 cells for radioligand binding analysis. After identification of candidate regions, site-directed mutagenesis was used to narrow the ligand selectivity to a single amino acid residue (alpha6N204/alpha4I203). Substitutions at alpha6N204 did not alter the affinity of the imidazobenzodiazepine Ro15-4513. A homologous mutation in the diazepam-sensitive alpha1 subunit (S205N) resulted in a 7-8-fold reduction in affinity for the beta-carbolines examined. Although the binding of the classical agonist flunitrazepam was relatively unaffected by this mutation in the alpha1 subunit, the affinity for Ro15-1788 and Ro15-4513 was decreased by approximately 19-fold and approximately 38-fold respectively. The importance of this residue, located in the Loop C region of the extracellular N-terminus of the subunit protein, emphasizes the differential interaction of ligands with the alpha subunit in diazepam-sensitive and -insensitive receptors.  相似文献   

4.
The gamma-aminobutyric acid/benzodiazepine receptor from bovine cerebral cortex was solubilized with sodium deoxycholate and purified by affinity chromatography on benzodiazepine-agarose and ion exchange chromatography. The benzodiazepine binding protein was enriched 1800-fold. Polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulfate and dithiothreitol showed the presence of two major bands of Mr = 57,000 and 53,000. [3H]Flunitrazepam, after UV irradiation, was incorporated irreversibly into both bands of the isolated protein. A high affinity binding site for gamma-aminobutyric acid was co-purified with the benzodiazepine binding site and the two sites were shown to reside on the same physical structure. The dissociation constants were 10 +/- 4 nM for [3H] flunitrazepam and 12 +/- 3 nM for the gamma-aminobutyric acid agonist [3H]muscimol. The maximum specific activity for [3H] muscimol binding was 4.3 nmol/mg of protein. The ratio of [3H]muscimol to [3H]flunitrazepam binding sites was between 3 and 4. Gel filtration and sucrose density gradient sedimentation studies gave a Stokes radius of 7.3 +/- 0.5 nm and a sedimentation coefficient of 11.1 +/- 0.3 S, respectively. The purified complex had a pharmacological profile that corresponds to the receptor specificity found in membranes and crude soluble extracts.  相似文献   

5.
6.
7.
Direct comparison of pyridine versus pyrimidine substituents on a small but diverse set of ligands indicates that the pyrimidine substitution has the potential to enhance affinity and/or functional activity at α6 subunit-containing neuronal nicotinic receptors (NNRs) and decrease activation of ganglionic nicotinic receptors, depending on the scaffold. The ramifications of this structure–activity relationship are discussed in the context of the design of small molecules targeting smoking cessation.  相似文献   

8.
Allosteric binding pockets in peptide-binding G protein-coupled receptors create opportunities for the development of small molecule drugs with substantial benefits over orthosteric ligands. To gain insights into molecular determinants for this pocket within type 1 and 2 cholecystokinin receptors (CCK1R and CCK2R), we prepared a series of receptor constructs in which six distinct residues in TM2, -3, -6, and -7 were reversed. Two novel iodinated CCK1R- and CCK2R-selective 1,4-benzodiazepine antagonists, differing only in stereochemistry at C3, were used. When all six residues within CCK1R were mutated to corresponding CCK2R residues, benzodiazepine selectivity was reversed, yet peptide binding selectivity was unaffected. Detailed analysis, including observations of gain of function, demonstrated that residues 6.51, 6.52, and 7.39 were most important for binding the CCK1R-selective ligand, whereas residues 2.61 and 7.39 were most important for binding CCK2R-selective ligand, although the effect of substitution of residue 2.61 was likely indirect. Ligand-guided homology modeling was applied to wild type receptors and those reversing benzodiazepine binding selectivity. The models had high predictive power in enriching known receptor-selective ligands from related decoys, indicating a high degree of precision in pocket definition. The benzodiazepines docked in similar poses in both receptors, with C3 urea substituents pointing upward, whereas different stereochemistry at C3 directed the C5 phenyl rings and N1 methyl groups into opposite orientations. The geometry of the binding pockets and specific interactions predicted for ligand docking in these models provide a molecular framework for understanding ligand selectivity at these receptor subtypes. Furthermore, the strong predictive power of these models suggests their usefulness in the discovery of lead compounds and in drug development programs.  相似文献   

9.
The recent discovery of pharmacologically relevant, high affinity, stereospecific binding sites for the benzodiazepines in the central nervous system (CNS) has rekindled investigations concerning the mechanism of action of these drugs. It has become increasingly clear that elucidation of benzodiazepine action will provide new and important insights into the neurochemical substances of seizure activity, centrally mediated muscle relaxation and anxiety, three major actions of this class of drugs.The existence of a functional receptor for the benzodiazepines, compounds not present in vivo, suggests that endogenous substances exist that serve as natural substrates for this receptor. Furthermore, the characterization of endogenous benzodiazepine receptor ligands affords an opportunity to determine the neurochemical mechanisms underlying the pharmacologic and behavioral effects manifested by the benzodiazepines.Using receptor binding methodology to assay tissue extracts for [3H] diazepam binding inhibitory activity, putative endogenous ligands for the benzodiazepine receptor have been isolated and identified as the purine nucleosides. Compounds such as inosine and hypoxanthine exhibit competitive inhibition of [3H] diazepam binding. The low affinity purinergic inhibition of diazepam binding is consistent with their in vivo concentrations. Distinct structure-activity relationships exist for the purines with subtle structural alterations having marked effects on diazepam binding inhibitory potency. The methylxanthine stimulants, caffeine, theophylline, and theobromine, also competitively inhibit diazepam binding, suggesting that some of their actions may be mediated by the benzodiazepine receptor.The purines also have “benzodiazepine-like” pharmacologic properties, since they have been shown to antagonize pentylenetetrazol induced seizures in mice in a dose dependent manner. Neurophysiologic studies have also shown that iontophoresis of inosine on cultured mouse primary neurons produce neurotransmitter like effects. Furthermore, these effects are similar to those observed with flurazepam, a finding that provides additional evidence for the “benzodiazepine-like” properties of the purines.The preliminary studies outlined below indicate that the purines are good candidates as putative endogenous ligands for the benzodiazepine receptor and provide a foundation for future studies that concern the homeostatic mediation of seizure activity and anxiety.  相似文献   

10.
11.
A class of flavanoids exhibiting a high degree of selectivity for ERalpha over ERbeta has been discovered. The most active analogue 6 was found to be 66-fold ERalpha-selective and demonstrated uterine estradiol antagonism.  相似文献   

12.
The gamma-aminobutyric acid/benzodiazepine receptor complex was purified from rat cortex and cerebellum by benzodiazepine affinity chromatography. Receptors purified from cortex and cerebellum showed different relative affinities for Cl 218872, a non-benzodiazepine ligand which discriminates type I and type II receptors. In contrast, no differences in subunit composition could be detected between these two purified receptor preparations when analyzed by two-dimensional gel electrophoresis.  相似文献   

13.
Binding activity of the radioactive cage convulsant [35S]t-butylbicyclophosphorothionate was solubilized from rat brain membranes using the zwitterionic detergent 3-[(3-cholamidopropyl)-dimethylammonio] propanesulfonate. Binding (KD = 26 nM, Bmax = 0.4 pmol/mg protein) was inhibited by picrotoxin and related convulsants and by barbiturates and related depressants that interact with gamma-aminobutyric acid and benzodiazepine receptors via the picrotoxinin binding site. The convulsant/barbiturate binding activity chromatographed on gel filtration as a single peak coinciding with the benzodiazepine/gamma-aminobutyric acid receptor protein complex.  相似文献   

14.
The gamma-aminobutyric acidA (GABAA) receptor purified from adult bovine cerebral cortex was photoaffinity-labelled with the agonist benzodiazepine [3H]flunitrazepam and the radioactivity shown to be coincident with a band with Mr 53,000 that was recognized by three anti-(GABAA receptor alpha 1 subunit sequence)-specific antibodies. Complete and limited CNBr cleavage of the purified photoaffinity-labelled receptor was carried out. The products of this reaction were analysed for radioactivity, for immunoreactivity with anti-[alpha 1-(1-15)-peptide], anti-[alpha 1-(324-341)-peptide] and anti-[alpha 1-(413-429)-peptide] polyclonal antibodies and for carbohydrate by biotinylated concanavalin A lectin overlay. Complete CNBr cleavage gave a radioactive peptide with Mr 10,000-12,000 that was not recognized by the above-mentioned specific antisera. By using the deduced amino acid sequence of the alpha 1 subunit [Schofield, Darlison, Fujita, Burt, Stephenson, Rodriguez, Rhee, Ramachandran, Reale, Glencorse, Seeburg & Barnard (1987) Nature (London) 328, 221-227], it is proposed that the site of the benzodiazepine-agonist photoaffinity-labelling reaction does not lie within the amino acid sequences alpha 1 1-58 and alpha 1 149-429.  相似文献   

15.
Estrogen receptors alpha (ERalpha) and beta (ERbeta) have distinct functions and differential expression in certain tissues. These differences have stimulated the search for subtype-selective ligands. Therapeutically, such ligands offer the potential to target specific tissues or pathways regulated by one receptor subtype without affecting the other. As reagents, they can be utilized to probe the physiological functions of the ER subtypes to provide information complementary to that obtained from knock-out animals. A fluorescence resonance energy transfer-based assay was used to screen a 10,000-compound chemical library for ER agonists. From the screen, we identified a family of ERbeta-selective agonists whose members contain bulky oxabicyclic scaffolds in place of the planar scaffolds common to most ER ligands. These agonists are 10-50-fold selective for ERbeta in competitive binding assays and up to 60-fold selective in transactivation assays. The weak uterotrophic activity of these ligands in immature rats and their ability to stimulate expression of an ERbeta regulated gene in human U2OS osteosarcoma cells provides more physiological evidence of their ERbeta-selective nature. To provide insight into the molecular mechanisms of their activity and selectivity, we determined the crystal structures of the ERalpha ligand-binding domain (LBD) and a peptide from the glucocorticoid receptor-interacting protein 1 (GRIP1) coactivator complexed with the ligands OBCP-3M, OBCP-2M, and OBCP-1M. These structures illustrate how the bicyclic scaffolds of these ligands are accommodated in the flexible ligand-binding pocket of ER. A comparison of these structures with existing ER structures suggests that the ERbeta selectivity of OBCP ligands can be attributed to a combination of their interactions with Met-336 in ERbeta and Met-421 in ERalpha. These bicyclic ligands show promise as lead compounds that can target ERbeta. In addition, our understanding of the molecular determinants of their subtype selectivity provides a useful starting point for developing other ER modulators belonging to this relatively new structural class.  相似文献   

16.
The potency and efficacy of a series of bioisosterically modified GABA analogues were determined electrophysiologically using heteromeric GABA(A) receptors expressed in Xenopus oocytes. These agonist parameters were shown to be strongly dependent on the receptor subunit combination. On the other hand, the antagonist potencies of the classical GABA(A) antagonists SR 95531 (7) and BMC (8) and also of 5g and the phosphinic acid bioisosteres of 5a, compounds 5f and 6, were essentially independent of the receptor subunit combinations.  相似文献   

17.
The influence of GABA on the affinity of flunitrazepam (FLU) for benzodiazepine receptor subtypes (type I and II) was studied by measurement of the competitive inhibition of [3H]FLU and [3H]propyl beta-carboline-3-carboxylate ([3H]PCC) binding. When assays were carried out at 0°C using a low concentration (0.040 nM) of [3H]PCC so that the type I receptors were selectively labelled, no significant effect of GABA (10?4 M) on the FLU[3H]PCC competition curve was detected. In contrast, when assays were carried out at 0°C using [3H]FLU or a high concentration of [3H]PCC to achieve [3H]ligand receptor occupancy of both type I and type II receptors, GABA (10?4 M) caused a significant increase in the affinity of FLU as measured by FLU[3H]FLU and FLU[3H]PCC competition experiments. Collectively, these data suggest that the influence of GABA on benzodiazepine receptor binding is mediated, primarily, by the type II receptor. It was also noted that the PCC[3H]FLU competition curve had a Hill coefficient of approximately 1 at 37°C as compared to the results of experiments at 0°C during which a Hill coefficient of approximately 0.7 was calculated.  相似文献   

18.
Various pharmacological studies have implicated the dopamine D(3) receptor as an interesting therapeutic target in the treatment of different neurological disorders. Because of these putative therapeutic applications, D(3) receptor ligands with diverse intrinsic activities have been an active field of research in recent years. Separation of purely D(3)-mediated drug effects from effects produced by interactions with similar biogenic amine receptors allows to verify the therapeutic impact of D(3) receptors and to reduce possible side-effects caused by "promiscuous" receptor interactions. The requirement to gain control of receptor selectivity and in particular subtype selectivity has been a challenging task in rational drug discovery for quite a few years. In this review, recently developed structural classes of D(3) ligands are discussed, which cover a broad spectrum of intrinsic activities and show interesting selectivities.  相似文献   

19.
Neuraminidase (NA) plays a critical role in the life cycle of influenza virus and is a target for new therapeutic agents. A series of influenza neuraminidase inhibitors with the pyrrolidinobenzoic acid scaffold containing lipophilic side chains at the C3 position have been synthesized and evaluated for influenza neuraminidase inhibitory activity. The size and geometry of the C3 side chains have been modified in order to investigate structure-activity relationships. The results indicated that size and geometry of the C3-side chain are important for selectivity of inhibition against N1 versus N2 NA, important type A influenza variants that infect man, including the highly lethal avian influenza.  相似文献   

20.
Adenosine receptors are plasma membrane proteins that transduce an extracellular signal into the interior of the cell. Basically every mammalian cell expresses at least one of the four adenosine receptor subtypes. Recent insight in signal transduction cascades teaches us that the current classification of receptor ligands into agonists, antagonists, and inverse agonists relies very much on the experimental setup that was used. Upon activation of the receptors by the ubiquitous endogenous ligand adenosine they engage classical G protein-mediated pathways, resulting in production of second messengers and activation of kinases. Besides this well-described G protein-mediated signaling pathway, adenosine receptors activate scaffold proteins such as β-arrestins. Using innovative and sensitive experimental tools, it has been possible to detect ligands that preferentially stimulate the β-arrestin pathway over the G protein-mediated signal transduction route, or vice versa. This phenomenon is referred to as functional selectivity or biased signaling and implies that an antagonist for one pathway may be a full agonist for the other signaling route. Functional selectivity makes it necessary to redefine the functional properties of currently used adenosine receptor ligands and opens possibilities for new and more selective ligands. This review focuses on the current knowledge of functionally selective adenosine receptor ligands and on G protein-independent signaling of adenosine receptors through scaffold proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号