首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 9 毫秒
1.
2.
In plants, K transporter (KT)/high affinity K transporter (HAK)/K uptake permease (KUP) is the largest potassium (K) transporter family; however, few of the members have had their physiological functions characterized in planta. Here, we studied OsHAK5 of the KT/HAK/KUP family in rice (Oryza sativa). We determined its cellular and tissue localization and analyzed its functions in rice using both OsHAK5 knockout mutants and overexpression lines in three genetic backgrounds. A β-glucuronidase reporter driven by the OsHAK5 native promoter indicated OsHAK5 expression in various tissue organs from root to seed, abundantly in root epidermis and stele, the vascular tissues, and mesophyll cells. Net K influx rate in roots and K transport from roots to aerial parts were severely impaired by OsHAK5 knockout but increased by OsHAK5 overexpression in 0.1 and 0.3 mm K external solution. The contribution of OsHAK5 to K mobilization within the rice plant was confirmed further by the change of K concentration in the xylem sap and K distribution in the transgenic lines when K was removed completely from the external solution. Overexpression of OsHAK5 increased the K-sodium concentration ratio in the shoots and salt stress tolerance (shoot growth), while knockout of OsHAK5 decreased the K-sodium concentration ratio in the shoots, resulting in sensitivity to salt stress. Taken together, these results demonstrate that OsHAK5 plays a major role in K acquisition by roots faced with low external K and in K upward transport from roots to shoots in K-deficient rice plants.Potassium (K) is one of the three most important macronutrients and the most abundant cation in plants. As a major osmoticum in the vacuole, K drives the generation of turgor pressure, enabling cell expansion. In the vascular tissue, K is an important participant in the generation of root pressure (for review, see Wegner, 2014 [including his new hypothesis]). In the phloem, K is critical for the transport of photoassimilates from source to sink (Marschner, 1996; Deeken et al., 2002; Gajdanowicz et al., 2011). In addition, enhancing K absorption and decreasing sodium (Na) accumulation is a major strategy of glycophytes in salt stress tolerance (Maathuis and Amtmann, 1999; Munns and Tester, 2008; Shabala and Cuin, 2008).Plants acquire K through K-permeable proteins at the root surface. Since available K concentration in the soil may vary by 100-fold, plants have developed multiple K uptake systems for adapting to this variability (Epstein et al., 1963; Grabov, 2007; Maathuis, 2009). In a classic K uptake experiment in barley (Hordeum vulgare), root K absorption has been described as a high-affinity and low-affinity biphasic transport process (Epstein et al., 1963). It is generally assumed that the low-affinity transport system (LATS) in the roots mediates K uptake in the millimolar range and that the activity of this system is insensitive to external K concentration (Maathuis and Sanders, 1997; Chérel et al., 2014). In contrast, the high-affinity transport system (HATS) was rapidly up-regulated when the supply of exogenous K was halted (Glass, 1976; Glass and Dunlop, 1978).The membrane transporters for K flux identified in plants are generally classified into three channels and three transporter families based on phylogenetic analysis (Mäser et al., 2001; Véry and Sentenac, 2003; Lebaudy et al., 2007; Alemán et al., 2011). For K uptake, it was predicted that, under most circumstances, K transporters function as HATS, while K-permeable channels mediate LATS (Maathuis and Sanders, 1997). However, a root-expressed K channel in Arabidopsis (Arabidopsis thaliana), Arabidopsis K Transporter1 (AKT1), mediates K absorption over a wide range of external K concentrations (Sentenac et al., 1992; Lagarde et al., 1996; Hirsch et al., 1998; Spalding et al., 1999), while evidence is accumulating that many K transporters, including members of the K transporter (KT)/high affinity K transporter (HAK)/K uptake permease (KUP) family, are low-affinity K transporters (Quintero and Blatt, 1997; Senn et al., 2001), implying that functions of plant K channels and transporters overlap at different K concentration ranges.Out of the three families of K transporters, cation proton antiporter (CPA), high affinity K/Na transporter (HKT), and KT/HAK/KUP, CPA was characterized as a K+(Na+)/H+ antiporter, HKT may cotransport Na and K or transport Na only (Rubio et al., 1995; Uozumi et al., 2000), while KT/HAK/KUP were predicted to be H+-coupled K+ symporters (Mäser et al., 2001; Lebaudy et al., 2007). KT/HAK/KUP were named by different researchers who first identified and cloned them (Quintero and Blatt, 1997; Santa-María et al., 1997). In plants, the KT/HAK/KUP family is the largest K transporter family, including 13 members in Arabidopsis and 27 members in the rice (Oryza sativa) genome (Rubio et al., 2000; Mäser et al., 2001; Bañuelos et al., 2002; Gupta et al., 2008). Sequence alignments show that genes of this family share relatively low homology to each other. The KT/HAK/KUP family was divided into four major clusters (Rubio et al., 2000; Gupta et al., 2008), and in cluster I and II, they were further separated into A and B groups. Genes of cluster I or II likely exist in all plants, cluster III is composed of genes from both Arabidopsis and rice, while cluster IV includes only four rice genes (Grabov, 2007; Gupta et al., 2008).The functions of KT/HAK/KUP were studied mostly in heterologous expression systems. Transporters of cluster I, such as AtHAK5, HvHAK1, OsHAK1, and OsHAK5, are localized in the plasma membrane (Kim et al., 1998; Bañuelos et al., 2002; Gierth et al., 2005) and exhibit high-affinity K uptake in the yeast Saccharomyces cerevisiae (Santa-María et al., 1997; Fu and Luan, 1998; Rubio et al., 2000) and in Escherichia coli (Horie et al., 2011). Transporters of cluster II, like AtKUP4 (TINY ROOT HAIRS1, TRH1), HvHAK2, OsHAK2, OsHAK7, and OsHAK10, could not complement the K uptake-deficient yeast (Saccharomyces cerevisiae) but were able to mediate K fluxes in a bacterial mutant; they might be tonoplast transporters (Senn et al., 2001; Bañuelos et al., 2002; Rodríguez-Navarro and Rubio, 2006). The function of transporters in clusters III and IV is even less known (Grabov, 2007).Existing data suggest that some KT/HAK/KUP transporters also may respond to salinity stress (Maathuis, 2009). The cluster I transporters of HvHAK1 mediate Na influx (Santa-María et al., 1997), while AtHAK5 expression is inhibited by Na (Rubio et al., 2000; Nieves-Cordones et al., 2010). Expression of OsHAK5 in tobacco (Nicotiana tabacum) BY2 cells enhanced the salt tolerance of these cells by accumulating more K without affecting their Na content (Horie et al., 2011).There are only scarce reports on the physiological function of KT/HAK/KUP in planta. In Arabidopsis, mutation of AtKUP2 (SHORT HYPOCOTYL3) resulted in a short hypocotyl, small leaves, and a short flowering stem (Elumalai et al., 2002), while a loss-of-function mutation of AtKUP4 (TRH1) resulted in short root hairs and a loss of gravity response in the root (Rigas et al., 2001; Desbrosses et al., 2003; Ahn et al., 2004). AtHAK5 is the only system currently known to mediate K uptake at concentrations below 0.01 mm (Rubio et al., 2010) and provides a cesium uptake pathway (Qi et al., 2008). AtHAK5 and AtAKT1 are the two major physiologically relevant molecular entities mediating K uptake into roots in the range between 0.01 and 0.05 mm (Pyo et al., 2010; Rubio et al., 2010). AtAKT1 may contribute to K uptake within the K concentrations that belong to the high-affinity system described by Epstein et al. (1963).Among all 27 members of the KT/HAK/KUP family in rice, OsHAK1, OsHAK5, OsHAK19, and OsHAK20 were grouped in cluster IB (Gupta et al., 2008). These four rice HAK members share 50.9% to 53.4% amino acid identity with AtHAK5. OsHAK1 was expressed in the whole plant, with maximum expression in roots, and was up-regulated by K deficiency; it mediated high-affinity K uptake in yeast (Bañuelos et al., 2002). In this study, we examined the tissue-specific localization and the physiological functions of OsHAK5 in response to variation in K supply and to salt stress in rice. By comparing K uptake and translocation in OsHAK5 knockout (KO) mutants and in OsHAK5-overexpressing lines with those in their respective wild-type lines supplied with different K concentrations, we found that OsHAK5 not only mediates high-affinity K acquisition but also participates in root-to-shoot K transport as well as in K-regulated salt tolerance.  相似文献   

3.
The presence of previously absorbed K in plants caused a marked reduction in the short term influx of 86Rb-labeled K into roots of barley seedlings. The influx values agreed with net K absorption rates into intact plants, thus suggesting that K efflux was negligible in comparison with influx.  相似文献   

4.
JARVIS  S. C. 《Annals of botany》1982,49(2):199-206
The absorption and distribution of sodium were examined in threegrasses grown in flowing solution culture with different suppliesof potassium. There were marked differences between the speciesin the rate of absorption by their roots, timothy absorbingat a much slower rate than either ryegrass or cocksfoot. Inall species, the rate of Na absorption was greatest when therewas a maintained supply of K and/or when the K contents of theplants were high. Transport of Na from roots to shoots of timothywas restricted; it was less restricted in the other speciesand large proportions of the Na moved from roots to shoots whenK was not supplied to the plants. Sodium transported from theroots accumulated in old leaves and not in the younger leaves.When K was no longer supplied, the growth of ryegrass was maintainedin the plants previously grown with Na plus K; Na supplied insteadof K, however, did not maintain growth. Cocksfoot grown withNa grew less well than when grown without Na when plants wereno longer supplied with K; the growth of timothy was unaffectedby Na. Dactylis glomerata L., Lolium perenne L., Phleum pratense L., cocksfoot, ryegrass, timothy, absorption of ions, distribution of ions, potassium, sodium  相似文献   

5.
The study summarizes the objectives of the VALIMAR project and gives selected examples of biomarker responses that allow causal relationships to be established between exposure and biological effects at different levels of biological organization. In this project, active and passive biomonitoring experiments with brown trout (Salmo trutta f. fario) and stone loach (Barbatula barbatula) were performed in two small streams in southern Germany between 1995 and 1999 in parallel with investigations on contaminant mixtures in the laboratory in order to evaluate the suitability of biomarkers representing different levels of biological organization for the assessment of pollution in small streams. In addition to biomarker studies, the morphology of the test streams was characterized and limnological and chemical parameters were monitored. Early life stage tests and ecological studies of brown trout and stone loach population demography, of the fish assemblages, and the macro- and meiozoobenthos communities in the two test streams were included in the project. Several causality criteria were addressed by means of combined (1) laboratory and field studies, (2) chemical, biological, and statistical investigations, and (3) in vivo and in vitro studies that allowed establishment of cause-effect relationships at different biological levels. The comparison of results obtained at these levels allowed identification of mechanisms responsible for the respective effects (coherence of association, biological plausibility). Finally, individual responses (biomarkers, bioindicators) could be extrapolated to higher biological levels (population, community) thus addressing the criteria of ‘time order’ and ‘coherence of association’.  相似文献   

6.
The Absorption of Potassium Ions by Plasmolysed Cells   总被引:1,自引:0,他引:1  
The absorption of potassium ions by cells of red beetroot tissueplasmolysed in various media has been examined and comparedwith that of unplasmolysed cells under similar experimentalconditions. It is established that although the plasmolysing agents in themselvestend to promote the absorption of ions at the concentrationsemployed, the effect of plasmolysis is to inhibit the rate ofpotassium uptake. Evidence is provided that this is due to anincrease in the rate of leakage of ions from plasmolysed cells,and to a reduction of gross uptake. These results are discussed in terms of the structural and physiologicalchanges which are associated with plasmolysis. It is concludedthat alterations in the surface area, and thickness or densityof the protoplasts, modifications of the vacuolar concentrationof ions, and respiratory influences are all involved. Anotherfactor, the nature of which has not been elucidated, also appearsto be involved.  相似文献   

7.
At salt concentrations of 0.1 mM as well as of 5.0 mM, the 22Na+ absorption capacity of bean (Phaseolus vulgaris L. cv. ‘Brittle Wax’) leaf tissue increased during the period of leaf expansion and decreased rapidly after leaf maturation. The absorption capacity for 86Rb+ and 42K+ was highest in very young leaves and decreased continuously in expanding and in mature leaves. The 86Rb+ absorption capacity of mature leaves was not increased by detopping the plants; this senescence-retarding treatment more than doubled 2Na+ absorption. The absorption of 22Na+ by bean-leaf slices was not enhanced by light, whereas 86Rb+ and 42K+ absorption was much affected. Previously absorbed 86Rb+ and 42K+ were more available for exchange than 22Na+.  相似文献   

8.
The state-of-art research in the field of life’s organization confronts the need to investigate a number of interacting components, their properties and conditions of sustainable behaviour within a natural system. In biology, ecology and life sciences, the performance of such stable system is usually related to homeostasis, a property of the system to actively regulate its state within a certain allowable limits. In our previous work, we proposed a deterministic model for systems’ homeostasis. The model was based on dynamical system’s theory and pairwise relationships of competition, amensalism and antagonism taken from theoretical biology and ecology. However, the present paper proposes a different dimension to our previous results based on the same model. In this paper, we introduce the influence of inter-component relationships in a system, wherein the impact is characterized by direction (neutral, positive, or negative) as well as its (absolute) value, or strength. This makes the model stochastic which, in our opinion, is more consistent with real-world elements affected by various random factors. The case study includes two examples from areas of hydrobiology and medicine. The models acquired for these cases enabled us to propose a convincing explanation for corresponding phenomena identified by different types of natural systems.  相似文献   

9.
Variance components and their ratios broad-sense heritability and constancy were estimated for some quantitative traits in northwestern Spain populations of maize. Estimations were carried out at the significance levels of 5% and 25% and without significance limits. It can be concluded that estimation without significance limits is more efficient than the estimations at the usual levels in the method of analysis of experimental data from fields experiments.  相似文献   

10.
11.
Increasing concentrations of K (20, 200, 2000 μm) in the nutrient solution depressed Ca content and concentration in barley plants growing in nutrient solutions of low Ca concentrations (250 and 2500 μm). Increasing K from 20 to 200 μm depressed Ca absorption more than increasing K from 200 to 2000 μm K.  相似文献   

12.
以2个耐低钾基因型水稻N18、N19和2个低钾敏感基因型水稻N27、N28为材料,采用溶液培养试验,研究低钾胁迫对其苗期根系生长和内源激素含量的影响。结果表明,低钾胁迫下,水稻根长、地上部干重和根干重均降低,但N18和N19显著高于N27和N28。低钾胁迫使4个基因型水稻的根冠比增大,而各基因型之间差异不显著。低钾胁迫下,水稻根中IAA、GA1和ZR含量均减少,ABA含量增加;N18、N19根中IAA、GA1和ZR含量都高于N27、N28。此外,低钾胁迫使水稻根中IAA/ABA、ZR/ABA、GA1/ABA值降低,但N18、N19的上述比值高于N27、N28。  相似文献   

13.
14.
The influence of hydration on the nanosecond timescale dynamics of tRNA is investigated using neutron scattering spectroscopy. Unlike protein dynamics, the dynamics of tRNA is not affected by methyl group rotation. This allows for a simpler analysis of the influence of hydration on the conformational motions in RNA. We find that hydration affects the dynamics of tRNA significantly more than that of lysozyme. Both the characteristic length scale and the timescale of the conformational motions in tRNA depend strongly on hydration. Even the characteristic temperature of the so-called “dynamical transition” appears to be hydration-dependent in tRNA. The amplitude of the conformational motions in fully hydrated tRNA is almost twice as large as in hydrated lysozyme. We ascribe these differences to a more open and flexible structure of hydrated RNA, and to a larger fraction and different nature of hydrophilic sites. The latter leads to a higher density of water that makes the biomolecule more flexible. All-atom molecular-dynamics simulations are used to show that the extent of hydration is greater in tRNA than in lysozyme. We propose that water acts as a “lubricant” in facilitating enhanced motion in solvated RNA molecules.  相似文献   

15.
This study investigated the effect of potassium (K) on sheath blight (Rhizoctonia solani) development on rice plants from cultivars BR‐IRGA 409 and Labelle grown in nutrient solution containing 0, 50 and 100 mm of K. Sheath blight progress on inoculated sheaths was evaluated by measuring the relative lesion length at 48, 72, 96 and 120 h after inoculation (hai). Data were used to calculate the area under relative lesion length progress curve (AURLLPC). The foliar K concentration on leaf sheaths tissue increased by 61.48 and 116.05% to cultivars BR‐IRGA 409 and Labelle, respectively, as the K rates increased from 0 to 100 mm . A linear model best described the relationship between the AURLLPC and the K rates. The AURLLPC decreased by 29.2 and 21.3% for cultivars BR‐IRGA 409 and Labelle, respectively, as the K rates in the nutrient solution increased. It can be concluded that high K concentration on leaf sheaths tissue was important to decrease sheath blight symptoms on rice leaf sheaths.  相似文献   

16.
Complex vocal signals composed of multiple notes are used by many species. Such signals may vary in a number of features such as the rules that govern note order and timing (syntax), the relative number and types of different notes (note composition), and the acoustic structure of notes (phonology). Previous research examining male song in songbirds typically has shown greater conservation of syntax than phonology. Here we investigated whether these patterns of variation are also found in the duets of parrots. We examined geographic variation in the pair duets of yellow-naped amazons, Amazona auropalliata , at five sites within one vocal dialect. We also examined variation at several levels of social organization, including within pairs, among pairs and among sites, to assess where variability was greatest. Variation was highest at the within-pair level, although variation was also present at all other levels and for all of the duet factors. We hypothesize that variation at the among-site level allows duets to indicate site membership, while variation at the within-pair level allows pairs to change their duet to match their current social or physical environment. Syntax and phonology are also more conserved than note composition for all levels of social organization. This pattern may result because note composition is less important in duet function than syntax or phonology, or because development of syntax and phonology is more heavily influenced by genetic templates.  相似文献   

17.
18.
Visual evoked potentials (EPs) of the left and right hemispheres in response to relevant and irrelevant stimuli in the structures of the left and right hemispheres have been studied in healthy young schoolchildren, learning-disabled (LD) children, and mentally retarded (MR) children. In healthy children, the largest EP variations depending on the stimulus relevancy have been found in associative structures of the left hemisphere. In LD children of the same age, the amplitude and temporal characteristics of left-hemispheric EPs to target and nontarget stimuli are the same. In MR children, EPs to relevant and irrelevant stimuli do not differ from each other in either the left or the right hemisphere. EP latencies are significantly longer in MR children than in healthy children. The results of simultaneous recording of EPs in the left and right hemispheres during isolated stimulation of the right and left visual half-fields indicate that interhemispheric interaction is impaired in children with deviations in mental development. The results of the study are discussed in terms of the psychological characteristics and learning ability of children.  相似文献   

19.
Stomatal Characteristics at Different Ploidy Levels inCoffeaL.   总被引:1,自引:0,他引:1  
MISHRA  M. K. 《Annals of botany》1997,80(5):689-692
Stomatal frequency, epidermal cell frequency, stomatal guardcell length and stomatal index were examined at different ploidylevels inCoffea. In general, stomatal and epidermal cell frequencyper unit leaf area decreased while stomatal guard cell lengthincreased with an increase in ploidy. The reduction in stomatalfrequency at higher ploidy levels was mainly a result of largerepidermal cells. In the case ofC. canephora(cultivar S.274)a significant reduction in stomatal frequency was noticed fromdiploid to tetraploid level which was due to both larger epidermalcell size and less stomatal differentiation at the tetraploidlevel. Besides the effect of ploidy on stomatal frequency andguard cell length, genotypic differences in stomatal frequencyand stomatal guard cell length were also observed among cultivarsof the same ploidy level. Although variation in stomatal frequencyamong cultivars was found to be associated with the differencein stomatal to epidermal cell ratio, variation in guard celllength was attributed to differential genetic architecture.In the present study a highly significant positive correlation(r=0.82) between stomatal and epidermal cell frequency and highnegative correlations between stomatal frequency and guard celllength (r=-0.91) and epidermal cell frequency and stomatal guardcell length (r=-0.93) were obtained. The study also indicatedthat stomatal frequency can be predicted with 83 and 87% accuracy,respectively, by measuring stomatal guard cell length in coffee.Copyright1997 Annals of Botany Company Coffea; ploidy level; stomatal characteristics  相似文献   

20.
Steady-state rates of potassium ion and sodium ion absorption by excised barley roots accompanied by various anions were compared with the rates of anion absorption and the concomitant H+ and base release by the roots. The cation absorption rates were found to be independent of the identities, concentrations, and rates of absorption of the anions of the external solution, including bicarbonate. Absorption of the anion of the salt plus bicarbonate could not account for the cation absorption. H+ is released during cation absorption and base during anion absorption. The magnitude by which one or the other predominates depends on the relative rates of anion and cation absorption under various conditions of pH, cation and anion concentration, and inhibitor concentrations. The conclusion is that potassium and sodium ions are absorbed independently of the anions of the absorption solution in exchange for H+, while anions are exchanged for a base. The H+ release reflects a specificity between K+ and Na+ absorption such that it appears to be H+ exchanged in the specific rate-limiting reactions of the cation absorption.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号