首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Neonatal bacterial meningitis continues to be an important cause of mortality and morbidity worldwide. Escherichia coli possessing the K1 capsular polysaccharide is the most common Gram-negative pathogen causing neonatal meningitis. Here we present the complete genome sequence of neonatal meningitis-associated E. coli strain CE10, a unique K1 strain with a functional type III secretion system. Functional analysis of the genome should enhance our knowledge of the pathogenesis of neonatal E. coli K1 meningitis.  相似文献   

2.
3.
EcoGene: a genome sequence database for Escherichia coli K-12   总被引:5,自引:1,他引:4       下载免费PDF全文
The EcoGene database provides a set of gene and protein sequences derived from the genome sequence of Escherichia coli K-12. EcoGene is a source of re-annotated sequences for the SWISS-PROT and Colibri databases. EcoGene is used for genetic and physical map compilations in collaboration with the Coli Genetic Stock Center. The EcoGene12 release includes 4293 genes. EcoGene12 differs from the GenBank annotation of the complete genome sequence in several ways, including (i) the revision of 706 predicted or confirmed gene start sites, (ii) the correction or hypothetical reconstruction of 61 frame-shifts caused by either sequence error or mutation, (iii) the reconstruction of 14 protein sequences interrupted by the insertion of IS elements, and (iv) pre-dictions that 92 genes are partially deleted gene fragments. A literature survey identified 717 proteins whose N-terminal amino acids have been verified by sequencing. 12 446 cross-references to 6835 literature citations and s are provided. EcoGene is accessible at a new website: http://bmb.med.miami.edu/EcoGene/EcoWeb. Users can search and retrieve individual EcoGene GenePages or they can download large datasets for incorporation into database management systems, facilitating various genome-scale computational and functional analyses.  相似文献   

4.
Enteropathogenic Escherichia coli (EPEC) was the first pathovar of E. coli to be implicated in human disease; however, no EPEC strain has been fully sequenced until now. Strain E2348/69 (serotype O127:H6 belonging to E. coli phylogroup B2) has been used worldwide as a prototype strain to study EPEC biology, genetics, and virulence. Studies of E2348/69 led to the discovery of the locus of enterocyte effacement-encoded type III secretion system (T3SS) and its cognate effectors, which play a vital role in attaching and effacing lesion formation on gut epithelial cells. In this study, we determined the complete genomic sequence of E2348/69 and performed genomic comparisons with other important E. coli strains. We identified 424 E2348/69-specific genes, most of which are carried on mobile genetic elements, and a number of genetic traits specifically conserved in phylogroup B2 strains irrespective of their pathotypes, including the absence of the ETT2-related T3SS, which is present in E. coli strains belonging to all other phylogroups. The genome analysis revealed the entire gene repertoire related to E2348/69 virulence. Interestingly, E2348/69 contains only 21 intact T3SS effector genes, all of which are carried on prophages and integrative elements, compared to over 50 effector genes in enterohemorrhagic E. coli O157. As E2348/69 is the most-studied pathogenic E. coli strain, this study provides a genomic context for the vast amount of existing experimental data. The unexpected simplicity of the E2348/69 T3SS provides the first opportunity to fully dissect the entire virulence strategy of attaching and effacing pathogens in the genomic context.  相似文献   

5.
Adherent-invasive Escherichia coli strains are increasingly being associated with intestinal pathologies. Here we present the genome sequence of E. coli HM605, a strain isolated from colonic biopsy specimens of a patient with Crohn's disease.  相似文献   

6.
Chromosomal DNA from 23 closely related, pathogenic strains of Escherichia coli was digested and probed for the insertion sequences IS1, IS2, IS4, IS5, and IS30. Under the assumption that elements residing in DNA restriction fragments of the same apparent length are identical by descent, parsimony analysis of these characters yielded a unique phylogenetic tree. This analysis not only distinguished among bacterial strains that were otherwise identical in their biochemical characteristics and enzyme electrophoretic mobilities, but certain aspects of the topology of the tree were consistent across several unrelated insertion elements. The distribution of IS elements was then reexamined in light of the inferred phylogenetic relationships to investigate the biological properties of the elements, such as rates of insertion and deletion, and to discover apparent recombinational events. The analysis shows that the pattern of distribution of insertion elements in the bacterial genome is sufficiently stable for epidemiological studies. Although the rate of recombination by conjugation has been postulated to be low, at least two such events appear to have taken place.   相似文献   

7.
V V Sukhodolets 《Genetika》1985,21(5):693-706
A review of literature data reveals that for the last years, the molecular biology techniques have been of an increasing use in the study of the Escherichia coli genome, having supplemented the standard genetic mapping. For the proper understanding of the Escherichia coli genome organization, recombinational events occurring in the course of evolution should be considered. The bacterial genome seems to carry traces of both "long-term" evolution, possibly responsible for appearance of the bacterial cell itself, and "current" evolution, consisting mainly of periodic genome entering by new plasmid-originated genes. It is supposed that in the process of stabilization within a genome, every new gene undergoes a stage of the "transgene", that is the gene situated in a transposon on the chromosome. In parallel with integration of new genes into the genome, some genes deleting should also take place. The formation of deletions could occur by unequal crossing over in segments of direct homologous repeats which seem to be ordinarily revealed in the experimental study of the tandem gene duplications.  相似文献   

8.

Background

There are several studies describing loss of genes through reductive evolution in microbes, but how selective forces are associated with genome expansion due to horizontal gene transfer (HGT) has not received similar attention. The aim of this study was therefore to examine how selective pressures influence genome expansion in 53 fully sequenced and assembled Escherichia coli strains. We also explored potential connections between genome expansion and the attainment of virulence factors. This was performed using estimations of several genomic parameters such as AT content, genomic drift (measured using relative entropy), genome size and estimated HGT size, which were subsequently compared to analogous parameters computed from the core genome consisting of 1729 genes common to the 53 E. coli strains. Moreover, we analyzed how selective pressures (quantified using relative entropy and dN/dS), acting on the E. coli core genome, influenced lineage and phylogroup formation.

Results

Hierarchical clustering of dS and dN estimations from the E. coli core genome resulted in phylogenetic trees with topologies in agreement with known E. coli taxonomy and phylogroups. High values of dS, compared to dN, indicate that the E. coli core genome has been subjected to substantial purifying selection over time; significantly more than the non-core part of the genome (p<0.001). This is further supported by a linear association between strain-wise dS and dN values (β = 26.94 ± 0.44, R2~0.98, p<0.001). The non-core part of the genome was also significantly more AT-rich (p<0.001) than the core genome and E. coli genome size correlated with estimated HGT size (p<0.001). In addition, genome size (p<0.001), AT content (p<0.001) as well as estimated HGT size (p<0.005) were all associated with the presence of virulence factors, suggesting that pathogenicity traits in E. coli are largely attained through HGT. No associations were found between selective pressures operating on the E. coli core genome, as estimated using relative entropy, and genome size (p~0.98).

Conclusions

On a larger time frame, genome expansion in E. coli, which is significantly associated with the acquisition of virulence factors, appears to be independent of selective forces operating on the core genome.

Electronic supplementary material

The online version of this article (doi:10.1186/1471-2164-15-882) contains supplementary material, which is available to authorized users.  相似文献   

9.
薛小莉  覃重军 《生命科学》2013,(10):978-982
大肠杆菌是基础研究最透彻、应用广泛的微生物,构建含减小甚至是最小基因组的大肠杆菌将为合成生物学的研究和应用提供理想的底盘生物。介绍了大肠杆菌最小基因组的生长与繁殖必需基因的生物信息学分析和实验鉴定,基因组敲除技术,以及删减基因组的大肠杆菌菌株的构建和应用等方面的研究进展。  相似文献   

10.
11.
We report here the complete nucleotide sequence of pEntH10407 (65 147 bp), an enterotoxigenic Escherichia coli enterotoxin plasmid (Ent plasmid), which is self-transmissible at low frequency. Within the plasmid, we identified 100 open reading frames (ORFs) which could encode polypeptides. These ORFs included regions encoding heat-labile (LT) and heat-stable (STIa) enterotoxins, regions encoding tools for plasmid replication and an incomplete tra (conjugation) region. The LT and STIa region was located 13.5 kb apart and was surrounded by three IS1s and an IS600 in opposite reading orientations, indicating that the enterotoxin genes may have been horizontally transferred into the plasmid. We identified a single RepFIIA replication region (2.0 kb) including RepA proteins similar to RepA1, RepA2, RepA3 and RepA4. The incomplete tra region was made up of 17 tra genes, which were nearly identical to the corresponding genes of R100, and showed evidence of multiple insertions of ISEc8 and ISEc8-like elements. These data suggest that pEntH10407 has the mosaic nature characteristic of bacterial virulence plasmids, which contains information about its evolution. Although the tra genes might originally have rendered pEntH10407 self-transferable to the same degree as R100, multiple insertion events have occurred in the tra region of pEntH10407 to make it less mobile. Another self-transmissible plasmid might help pEntH10407 to transfer efficiently into H10407 strain. In this paper, we suggest another possibility: that the enterotoxigenic H10407 strain might be formed by auto-transfer of pEntH10407 at a low rate using the incomplete tra region.  相似文献   

12.
Chromosomes in eukaryotes are linear, whereas those of most, but not all, prokaryotes are circular. To explore the effects of possessing a linear genome on prokaryotic cells, we linearized the Escherichia coli genome using the lysogenic lambda-like phage N15. Linear genome E. coli were viable and their genome structure was stable. There were no appreciable differences between cells with linear or circular genomes in growth rates, cell and nucleoid morphologies, genome-wide gene expression (with a few exceptions), and DNA gyrase- and topoisomerase IV-dependent growth. However, under dif-defective conditions, only cells with a circular genome developed an abnormal phenotype. Microscopy indicated that the ends of the linear genome, but not the circular genome, were separated and located at each end of a new-born cell. When tos - the cis-element required for linearization - was inserted into different chromosomal sites, those strains with the genome termini that were more remote from dif showed greater growth deficiencies.  相似文献   

13.
Yang H  Liao Y  Wang B  Lin Y  Pan L 《Journal of bacteriology》2011,193(22):6406-6407
L-Threonine has been widely used as a supplement in the food, pharmaceutical, and cosmetic industries. Here, we present a high-quality draft annotated genome sequence of Escherichia coli XH001, a producer of L-threonine in industry. Its genome and plasmid sequence will provide clues about the molecular mechanisms underlying its beneficial properties.  相似文献   

14.
15.

Background

Enteroaggregative Haemorrhagic E. coli (EAHEC) is a new pathogenic group of E. coli characterized by the presence of a vtx2-phage integrated in the genomic backbone of Enteroaggregative E. coli (EAggEC). So far, four distinct EAHEC serotypes have been described that caused, beside the large outbreak of infection occurred in Germany in 2011, a small outbreak and six sporadic cases of HUS in the time span 1992–2012. In the present work we determined the whole genome sequence of the vtx2-phage, termed Phi-191, present in the first described EAHEC O111:H2 isolated in France in 1992 and compared it with those of the vtx-phages whose sequences were available.

Results

The whole genome sequence of the Phi-191 phage was identical to that of the vtx2-phage P13374 present in the EAHEC O104:H4 strain isolated during the German outbreak 20 years later. Moreover, it was also almost identical to those of the other vtx2-phages of EAHEC O104:H4 strains described so far. Conversely, the Phi-191 phage appeared to be different from the vtx2-phage carried by the EAHEC O111:H21 isolated in the Northern Ireland in 2012.The comparison of the vtx2-phages sequences from EAHEC strains with those from the vtx-phages of typical Verocytotoxin-producing E. coli strains showed the presence of a 900 bp sequence uniquely associated with EAHEC phages and encoding a tail fiber.

Conclusions

At least two different vtx2-phages, both characterized by the presence of a peculiar tail fiber-coding gene, intervened in the emergence of EAHEC. The finding of an identical vtx2-phage in two EAggEC strains isolated after 20 years in spite of the high variability described for vtx-phages is unexpected and suggests that such vtx2-phages are kept under a strong selective pressure.The observation that different EAHEC infections have been traced back to countries where EAggEC infections are endemic and the treatment of human sewage is often ineffective suggests that such countries may represent the cradle for the emergence of the EAHEC pathotype. In these regions, EAggEC of human origin can extensively contaminate the environment where they can meet free vtx-phages likely spread by ruminants excreta.

Electronic supplementary material

The online version of this article (doi:10.1186/1471-2164-15-574) contains supplementary material, which is available to authorized users.  相似文献   

16.
Fold assignments for proteins from the Escherichia coli genome are carried out using BASIC, a profile-profile alignment algorithm, recently tested on fold recognition benchmarks and on the Mycoplasma genitalium genome and PSI BLAST, the newest generation of the de facto standard in homology search algorithms. The fold assignments are followed by automated modeling and the resulting three-dimensional models are analyzed for possible function prediction. Close to 30% of the proteins encoded in the E. coli genome can be recognized as homologous to a protein family with known structure. Most of these homologies (23% of the entire genome) can be recognized both by PSI BLAST and BASIC algorithms, but the latter recognizes an additional 260 homologies. Previous estimates suggested that only 10-15% of E. coli proteins can be characterized this way. This dramatic increase in the number of recognized homologies between E. coli proteins and structurally characterized protein families is partly due to the rapid increase of the database of known protein structures, but mostly it is due to the significant improvement in prediction algorithms. Knowing protein structure adds a new dimension to our understanding of its function and the predictions presented here can be used to predict function for uncharacterized proteins. Several examples, analyzed in more detail in this paper, include the DPS protein protecting DNA from oxidative damage (predicted to be homologous to ferritin with iron ion acting as a reducing agent) and the ahpC/tsa family of proteins, which provides resistance to various oxidating agents (predicted to be homologous to glutathione peroxidase).  相似文献   

17.
Systematic mutagenesis of the Escherichia coli genome   总被引:5,自引:0,他引:5       下载免费PDF全文
A high-throughput method has been developed for the systematic mutagenesis of the Escherichia coli genome. The system is based on in vitro transposition of a modified Tn5 element, the Sce-poson, into linear fragments of each open reading frame. The transposon introduces both positive (kanamycin resistance) and negative (I-SceI recognition site) selectable markers for isolation of mutants and subsequent allele replacement, respectively. Reaction products are then introduced into the genome by homologous recombination via the lambdaRed proteins. The method has yielded insertion alleles for 1976 genes during a first pass through the genome including, unexpectedly, a number of known and putative essential genes. Sce-poson insertions can be easily replaced by markerless mutations by using the I-SceI homing endonuclease to select against retention of the transposon as demonstrated by the substitution of amber and/or in-frame deletions in six different genes. This allows a Sce-poson-containing gene to be specifically targeted for either designed or random modifications, as well as permitting the stepwise engineering of strains with multiple mutations. The promiscuous nature of Tn5 transposition also enables a targeted gene to be dissected by using randomly inserted Sce-posons as shown by a lacZ allelic series. Finally, assessment of the insertion sites by an iterative weighted matrix algorithm reveals that these hyperactive Tn5 complexes generally recognize a highly degenerate asymmetric motif on one end of the target site helping to explain the randomness of Tn5 transposition.  相似文献   

18.
19.
A novel sequence of 2.9 kb in the intergenic region between the mutS and rpoS genes of Escherichia coli O157:H7 and closely related strains replaces a sequence of 6.1 kb in E. coli K-12 strains. At the same locus in Shigella dysenteriae type 1, a sequence identical to that in O157:H7 is bounded by the IS1 insertion sequence element. Extensive polymorphism in the mutS-rpoS chromosomal region is indicative of horizontal transfer events.  相似文献   

20.
The oligonucleotide composition of the E. coli genome and its sigma70-specific promoters has been analyzed. The promoter DNA was shown to contain mainly AT-rich hexanucleotides having functionally important physical properties such as the ability to form easily melting sites and induce the bending of the double helix. A comparative analysis of the electrostatic characteristics of hexanucleotides within the whole sequence of the E. coli genome and its promoter regions was made. Hexanucleotides possessing a more electronegative surrounding were found to predominate in the nucleotide sequence of the promoter DNA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号