首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Titin mutations as the molecular basis for dilated cardiomyopathy   总被引:11,自引:0,他引:11  
Dilated cardiomyopathy (DCM) is a heterogeneous cardiac disease characterized by ventricular dilatation and systolic dysfunction. Recent genetic studies have revealed that mutations in genes for cardiac sarcomere components lead to DCM. The cardiac sarcomere consists of thick and thin filaments and a giant protein, titin. Because one of the loci of familial DCM was mapped to the region of the titin gene, we searched for titin mutations in the patients and identified four possible disease-associated mutations. Two mutations, Val54Met and Ala743Val, were found in the Z-line region of titin and decreased binding affinities of titin to Z-line proteins T-cap/telethonin and alpha-actinin, respectively, in yeast two-hybrid assays. The other two mutations were found in the cardiac-specific N2-B region of titin and one of them was a nonsense mutation, Glu4053ter, presumably encoding for a truncated nonfunctional molecule. These observations suggest that titin mutations may cause DCM in a subset of the patients.  相似文献   

2.
Treacher Collins syndrome (TCOF1) is an autosomal dominant disorder of craniofacial development the features of which include conductive hearing loss and cleft palate. Previous studies have localized the TCOF1 locus between D5S519 (proximal) and SPARC (distal), a region of 22 centirays as estimated by radiation hybrid mapping. In the current investigation we have created a contig across the TCOF1 critical region, using YAC clones. Isolation of a novel short tandem repeat polymorphism corresponding to the end of one of the YACs has allowed us to reduce the size of the critical region to approximately 840 kb, which has been covered with three nonchimeric YACs. Restriction mapping has revealed that the region contains a high density of clustered rare-cutter restriction sites, suggesting that it may contain a number of different genes. The results of the present investigation have further allowed us to confirm that the RPS14 locus lies proximal to the critical region and can thereby be excluded from a role in the pathogenesis of TCOF1, while ANX6 lies within the TCOF1 critical region and remains a potential candidate for the mutated gene.  相似文献   

3.
4.
Dilated cardiomyopathy (DCM) is a heart-muscle disease characterized by ventricular dilatation and impaired heart contraction and is heterogeneous both clinically and genetically. To date, 12 candidate disease loci have been described for autosomal dominant DCM. We report the identification of a new locus on chromosome 6q12-16 in a French family with 9 individuals affected by the pure form of autosomal dominant DCM. This locus was found by using a genomewide search after exclusion of all reported disease loci and genes for DCM. The maximum pairwise LOD score was 3.52 at recombination fraction 0.0 for markers D6S1644 and D6S1694. Haplotype construction delineated a region of 16.4 cM between markers D6S1627 and D6S1716. This locus does not overlap with two other disease loci that have been described in nonpure forms of DCM and have been mapped on 6q23-24 and 6q23. The phospholamban, malic enzyme 1-soluble, and laminin-alpha4 genes were excluded as candidate genes, using single-strand conformation polymorphism or linkage analysis.  相似文献   

5.
6.
Annexin IV (placental anticoagulant protein II) is a member of the annexin or lipocortin family of calcium-dependent phospholipid-binding proteins. A cDNA for human annexin IV was isolated from a placental library that is 675 bases longer in the 3' untranslated region than previously reported, indicating the existence of alternative mRNA processing for this gene. Genomic Southern blotting with a cDNA probe indicated a gene size of 18-56 kb. Primers developed for polymerase chain reaction (PCR) allowed amplification of a 1.6-kb portion of the ANX4 gene. DNA sequence analysis showed that this PCR product contained a single intron with exon-intron boundaries in exactly the same position as in the mouse annexin I and annexin II genes. PCR analysis of a somatic cell hybrid panel mapped the ANX4 gene to chromosome 2, and in situ hybridization with a cDNA probe showed a unique locus for ANX4 at 2p13. This study provides further evidence that genes for the annexins are dispersed throughout the genome but are similar in size and exon-intron organization.  相似文献   

7.
A more detailed insight into disease mechanisms of multiple sclerosis (MS) is crucial for the development of new and more effective therapies. MS is a chronic inflammatory autoimmune disease of the central nervous system. The aim of this study is to identify novel disease associated proteins involved in the development of inflammatory brain lesions, to help unravel underlying disease processes. Brainstem proteins were obtained from rats with MBP induced acute experimental autoimmune encephalomyelitis (EAE), a well characterized disease model of MS. Samples were collected at different time points: just before onset of symptoms, at the top of the disease and following recovery. To analyze changes in the brainstem proteome during the disease course, a quantitative proteomics study was performed using two-dimensional difference in-gel electrophoresis (2D-DIGE) followed by mass spectrometry. We identified 75 unique proteins in 92 spots with a significant abundance difference between the experimental groups. To find disease-related networks, these regulated proteins were mapped to existing biological networks by Ingenuity Pathway Analysis (IPA). The analysis revealed that 70% of these proteins have been described to take part in neurological disease. Furthermore, some focus networks were created by IPA. These networks suggest an integrated regulation of the identified proteins with the addition of some putative regulators. Post-synaptic density protein 95 (DLG4), a key player in neuronal signalling and calcium-activated potassium channel alpha 1 (KCNMA1), involved in neurotransmitter release, are 2 putative regulators connecting 64% of the identified proteins. Functional blocking of the KCNMA1 in macrophages was able to alter myelin phagocytosis, a disease mechanism highly involved in EAE and MS pathology. Quantitative analysis of differentially expressed brainstem proteins in an animal model of MS is a first step to identify disease-associated proteins and networks that warrant further research to study their actual contribution to disease pathology.  相似文献   

8.
9.
Annexins (ANXs) are a family of structurally related proteins with Ca(2+)-dependent phospholipid-binding properties. Here we report the cloning of three cDNAs each encoding annexin IX (ANX IX) isoforms from unfertilized eggs of the silkworm, Bombyx mori. The analysis of exon/intron structures showed that the three mRNAs, named ANX IX-A (2300bp), ANX IX-B (1884bp) and ANX IX-C (1409bp), respectively, were generated from a single gene by alternative usage of a 3'-splice site of the last exon. Thus the three isoforms have an identical sequence from amino acid residues 1 to 307 and this region shows approximately 77% identity to Drosophila melanogaster ANX IX. Only amino acid residues 308-324 (A) or 308-323 (B and C), which correspond to the C-terminal tail, are different in the three proteins. A RT-PCR analysis indicated that the three isoforms of silkworm ANX IX were specifically expressed in various larval tissues and development stages. Interestingly, the C-terminal tail in ANXs I, II and V were previously confirmed as a binding region for protein kinase C. Thus generation of the three ANX IX isoforms in the silkworm, that are different from other ANXs, may have a functional significance other than binding to Ca(2+).  相似文献   

10.

Background  

Familial atrial fibrillation, an autosomal dominant disease, was previously mapped to chromosome 10q22. One of the genes mapped to the 10q22 region is DLG5, a member of the MAGUKs (Membrane Associated Gyanylate Kinase) family which mediates intracellular signaling. Only a partial cDNA was available for DLG5. To exclude potential disease inducing mutations, it was necessary to obtain a complete cDNA and genomic sequence of the gene.  相似文献   

11.
12.
Warren RF  Merritt PM  Holub E  Innes RW 《Genetics》1999,152(1):401-412
The RPS5 disease resistance gene of Arabidopsis mediates recognition of Pseudomonas syringae strains that possess the avirulence gene avrPphB. By screening for loss of RPS5-specified resistance, we identified five pbs (avrPphB susceptible) mutants that represent three different genes. Mutations in PBS1 completely blocked RPS5-mediated resistance, but had little to no effect on resistance specified by other disease resistance genes, suggesting that PBS1 facilitates recognition of the avrPphB protein. The pbs2 mutation dramatically reduced resistance mediated by the RPS5 and RPM1 resistance genes, but had no detectable effect on resistance mediated by RPS4 and had an intermediate effect on RPS2-mediated resistance. The pbs2 mutation also had varying effects on resistance mediated by seven different RPP (recognition of Peronospora parasitica) genes. These data indicate that the PBS2 protein functions in a pathway that is important only to a subset of disease-resistance genes. The pbs3 mutation partially suppressed all four P. syringae-resistance genes (RPS5, RPM1, RPS2, and RPS4), and it had weak-to-intermediate effects on the RPP genes. In addition, the pbs3 mutant allowed higher bacterial growth in response to a virulent strain of P. syringae, indicating that the PBS3 gene product functions in a pathway involved in restricting the spread of both virulent and avirulent pathogens. The pbs mutations are recessive and have been mapped to chromosomes I (pbs2) and V (pbs1 and pbs3).  相似文献   

13.
Recent genetic studies have revealed the impact of mutations in associated genes for cardiac sarcomere components leading to dilated cardiomyopathy (DCM). The cardiac sarcomere is composed of thick and thin filaments and a giant muscle protein known as titin or connectin. Titin interacts with T-cap/telethonin in the Z-line region and plays a vital role in regulating sarcomere assembly. Initially, we screened all the variants associated with giant protein titin and analyzed their impact with the aid of pathogenicity and stability prediction methods. V54M mutation found in the hydrophobic core region of the protein associated with abnormal clinical phenotype leads to DCM was selected for further analysis. To address this issue, we mapped the deleterious mutant V54M, modeled the mutant protein complex, and deciphered the impact of mutation on binding with its partner telethonin in the titin crystal structure of PDB ID: 1YA5 with the aid of docking analysis. Furthermore, two run molecular dynamics simulation was initiated to understand the mechanistic action of V54M mutation in altering the protein structure, dynamics, and stability. According to the results obtained from the repeated 50 ns trajectory files, the overall effect of V54M mutation was destabilizing and transition of bend to coil in the secondary structure was observed. Furthermore, MMPBSA elucidated that V54M found in the Z-line region of titin decreases the binding affinity of titin to Z-line proteins T-cap/telethonin thereby hindering the protein–protein interaction.  相似文献   

14.
Dilated cardiomyopathy (DCM), characterized by cardiac dilatation and contractile dysfunction, is a major cause of heart failure. Inherited DCM can result from mutations in the genes encoding cardiac troponin T, troponin C, and alpha-tropomyosin; different mutations in the same genes cause hypertrophic cardiomyopathy. To understand how certain mutations lead specifically to DCM, we have investigated their effect on contractile function by comparing wild-type and mutant recombinant proteins. Because initial studies on two troponin T mutations have generated conflicting findings, we analyzed all eight published DCM mutations in troponin T, troponin C, and alpha-tropomyosin in a range of in vitro assays. Thin filaments, reconstituted with a 1:1 ratio of mutant/wild-type proteins (the likely in vivo ratio), all showed reduced Ca(2+) sensitivity of activation in ATPase and motility assays, and except for one alpha-tropomyosin mutant showed lower maximum Ca(2+) activation. Incorporation of either of two troponin T mutants in skinned cardiac trabeculae also decreased Ca(2+) sensitivity of force generation. Structure/function considerations imply that the diverse thin filament DCM mutations affect different aspects of regulatory function yet change contractility in a consistent manner. The DCM mutations depress myofibrillar function, an effect fundamentally opposite to that of hypertrophic cardiomyopathy-causing thin filament mutations, suggesting that decreased contractility may trigger pathways that ultimately lead to the clinical phenotype.  相似文献   

15.
16.
Alpha T-catenin is a novel member of the alpha-catenin family, which shows most abundant expression in cardiomyocytes and in peritubular myoid cells of the testis, pointing to a specific function for alpha T-catenin in particular muscle tissues. Like other alpha-catenins, alpha T-catenin provides an indispensable link between the cadherin-based cell-cell adhesion complex and the cytoskeleton, to mediate cell-cell adhesion. By isolating genomic clones, combined with database sequence analysis, we have been able to determine the structure of the CTNNA3 and Ctnna3 genes, encoding human and mouse alpha T-catenin, respectively. The positions of the exon-exon boundaries are completely conserved in CTNNA3, Ctnna3, and the alpha N-catenin encoding CTNNA2 gene. They overlap largely with the boundaries of the CTNNA1 and CTNNAL1 genes encoding alpha E-catenin and alpha-catulin, respectively. This emphasizes that these alpha-catenin genes evolved from the same ancestor gene. Nevertheless, the introns of CTNNA3 and Ctnna3 are remarkably large (often more than 100 kb) compared with introns of other CTNNA genes. The CTNNA3 gene was mapped to chromosome band 10q21 by both fluorescence in situ hybridization and polymerase-chain-reaction-based hybrid mapping. This region encodes a gene for autosomal dominant familial dilated cardiomyopathy (DCM), a common cause of morbidity and mortality. As alpha T-catenin is highly expressed in healthy heart tissue, we have considered CTNNA3 as a candidate disease gene in a family showing DCM linkage to the 10q21-q23 locus. Mutation screening of all 18 exons of the CTNNA3 gene in this family has, however, not detected any DCM-linked CTNNA3 mutations.  相似文献   

17.
Cardiac conduction defects that are associated with dilated cardiomyopathy (DCM) are generally considered to be sporadic clinical entities, although familial forms of disorders with these clinical features have been identified in a number of families in different countries. An autosomal dominant cardiac disorder characterised by conduction abnormalities and DCM, termed progressive familial heart block type II (PFHBII) (OMIM 140400), has been described in a South African Caucasian family of Northern European descent. Known candidate loci for isolated conduction disorders, isolated DCM and conduction disorders complicated by DCM were excluded from disease causation in this family by linkage analysis, with the exception of the DCM-associated (CMD1D) locus on chromosome 1q32, where a maximum multipoint lod score of 3.7 in the interval between D1S3753 and D1S414, was generated. This region encompassed the troponin T gene (TNNT2), however, genetic fine mapping and haplotype analysis excluded TNNT2 as cause of PFHBII and placed the disease-causative gene within a 3.9 cM (2.85 Mb) interval, flanked by D1S70 and D1S505. Analysis of KCNH1, KIAA0205, LAMB3 and PPP2R5A, which map within the critical interval, indicated that the PFHBII-causative mutation does not lie within the coding regions or splice junctions of these plausible candidate genes. The data indicate the existence of a novel locus involved in the pathogenesis of cardiac conduction abnormalities and DCM.  相似文献   

18.
Club foot is one of the most common human congenital malformations. Distal arthrogryposis type I (DA-1) is a frequent cause of dominantly inherited club foot. Performing a genomewide search using short tandem repeat (STR) polymorphisms, we have mapped a DA-1 gene to the pericentromeric region of chromosome 9 in a large kindred. Linkage analysis has generated a positive lod score of 5.90 at theta = 0, with the marker GS-4. Multiple recombinants bracketing the region have been identified. Analysis of an additional family demonstrated no linkage to the same locus, indicating likely locus heterogeneity. Of the autosomal congenital contracture disorders causing positional foot deformities, this is the first to be mapped.  相似文献   

19.
Whether autoimmunity could cause dilated cardiomyopathy (DCM) was disputed for more than half a century. Autoantibodies against various cardiac antigens have been found in the sera of patients with DCM but none of these autoantibodies has been shown to have a substantial role in the development of DCM. It was recently reported that the injection of autoantibodies against cardiac troponin I (cTnI) can induce DCM in normal mice. This observation showed that autoantibodies can cause DCM and put an end to the controversy. Clinical trials of immunoglobulin-adsorption therapy for DCM have already started in Germany and the results seem promising. Here, we discuss the recent findings and possibilities of immunoglobulin-adsorption therapy for this deadly disease.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号