首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
Efficient gene control by antisense RNA requires rapid bi-molecular interaction with a cognate target RNA. A comparative analysis revealed that a YUNR motif (Y=pyrimidine, R=purine) is ubiquitous in RNA recognition loops in antisense RNA-regulated gene systems. The (Y)UNR sequence motif specifies two intraloop hydrogen bonds forming U-turn structures in many anticodon-loops and all T-loops of tRNAs, the hammerhead ribozyme and in other conserved RNA loops. This structure creates a sharp bend in the RNA phosphate-backbone and presents the following three to four bases in a solvent-exposed, stacked configuration providing a scaffold for rapid interaction with complementary RNA. Sok antisense RNA from plasmid R1 inhibits translation of the hok mRNA by preventing ribosome entry at the mok Shine & Dalgarno element. The 5' single-stranded region of Sok-RNA recognizes a loop in the hok mRNA. We show here, that the initial pairing between Sok antisense RNA and its target in hok mRNA occurs with an observed second-order rate-constant of 2 x 10(6) M(-1) s(-1). Mutations that eliminate the YUNR motif in the target loop of hok mRNA resulted in reduced antisense RNA pairing kinetics, whereas mutations maintaining the YUNR motif were silent. In addition, RNA phosphate-backbone accessibility probing by ethylnitrosourea was consistent with a U-turn structure formation promoted by the YUNR motif. Since the YUNR U-turn motif is present in the recognition units of many antisense/target pairs, the motif is likely to be a generally employed enhancer of RNA pairing rates. This suggestion is consistent with the re-interpretation of the mutational analyses of several antisense control systems including RNAI/RNAII of ColE1, CopA/CopT of R1 and RNA-IN/RNA-OUT of IS10.  相似文献   

3.
4.
5.
Nishio SY  Itoh T 《Plasmid》2008,60(3):174-180
Replication of the ColE2 plasmid requires a plasmid-coded initiator protein (Rep). Rep expression is controlled by antisense RNA (RNAI), which prevents the Rep mRNA translation. In this paper, we examined the effects of RNA degradation enzymes on the degradation pathways of RNAI of the ColE2 plasmid. In the DeltapcnB strain lacking the poly(A) polymerase I (PAP I) the RNAI degradation intermediate (RNAI(*)) accumulates much more than that in the wt strain. RNAI(*) is produced by the RNase E cleavage. RNase II and PNPase are involved in further degradation of RNAI(*) and PAP I is necessary for efficient degradation. The degradation process of ColE2 RNAI is similar to those of R1 CopA RNA and ColE1 RNAI, although the nucleotide sequences and fine secondary structures of these three RNAs are different. ColE2 RNAI is cleaved at multiple positions in the 5' end region by RNase E. The degradation pathway of ColE2 RNAI shown here is quite different from that of the ColE2 Rep mRNA which we have previously reported. In the DeltapcnB strain used for RNA analysis the copy number of the ColE2 plasmid decreases to about a half as compared with that in the isogenic wt strain.  相似文献   

6.
7.
Nishio SY  Itoh T 《Plasmid》2008,59(2):102-110
Replication of the ColE2 plasmid requires a plasmid-coded initiator protein (Rep). Rep expression is controlled by antisense RNA (RNAI) against the Rep mRNA at a translational step. In this paper, we examined the effects of host RNA degradation enzymes on the degradation process of the Rep mRNA and its degradation intermediates especially those carrying the 5' untranslated region. We showed that the Rep mRNA is subjected to complex degradation pathways involving at least RNase I, RNase II, RNase III, RNase E, RNase G and PNPase. RNase II acts as a major exoribonuclease and PNPase plays a minor role. We also showed that the PcnB (polyA polymerase I) plays only a minor role in the Rep mRNA degradation process. The RNA degradation pathways of the Rep mRNA and RNAI of the ColE2 plasmid are quite different. Based on these results, we speculate that the ColE2 Rep mRNA and RNAI are endowed with individual RNA half lives required for the efficient copy number control by being subjected to different RNA degradation systems.  相似文献   

8.
The multifunctional ribonuclease RNase E and the 3'-exonuclease polynucleotide phosphorylase (PNPase) are major components of an Escherichia coli ribonucleolytic "machine" that has been termed the RNA degradosome. Previous work has shown that poly(A) additions to the 3' ends of RNA substrates affect RNA degradation by both of these enzymes. To better understand the mechanism(s) by which poly(A) tails can modulate ribonuclease action, we used selective binding in 1 m salt to identify E. coli proteins that interact at high affinity with poly(A) tracts. We report here that CspE, a member of a family of RNA-binding "cold shock" proteins, and S1, an essential component of the 30 S ribosomal subunit, are poly(A)-binding proteins that interact functionally and physically, respectively, with degradosome ribonucleases. We show that purified CspE impedes poly(A)-mediated 3' to 5' exonucleolytic decay by PNPase by interfering with its digestion through the poly(A) tail and also inhibits both internal cleavage and poly(A) tail removal by RNase E. The ribosomal protein S1, which is known to interact with sequences at the 5' ends of mRNA molecules during the initiation of translation, can bind to both RNase E and PNPase, but in contrast to CspE, did not affect the ribonucleolytic actions of these enzymes. Our findings raise the prospect that E. coli proteins that bind to poly(A) tails may link the functions of degradosomes and ribosomes.  相似文献   

9.
10.
The hok / sok and pnd systems of plasmids R1 and R483 mediate plasmid maintenance by killing plasmid-free cells. Translation of the exceptionally stable hok and pnd mRNAs is repressed by unstable antisense RNAs. The different stabilities of the killer mRNAs and their cognate repressors explain the onset of translation in plasmid-free cells. The full-length hok and pnd mRNAs are inert with respect to translation and antisense RNA binding. We have previously shown that the mRNAs contain two negative translational control elements. Thus, the mRNAs contain upstream anti-Shine–Dalgarno elements that repress translation by shielding the Shine–Dalgarno ele-ments. The mRNAs also contain fold-back-inhibition elements ( fbi  ) at their 3' ends that are required to maintain the inert mRNA configuration. Using genetic complementation, we show that the 3' fbi elements pair with the very 5' ends of the mRNAs. This pairing sets the low rate of 3' exonucleolytical processing, which is required for the accumulation of an activatable pool of mRNA. Unexpectedly, the hok and pnd mRNAs were found to contain translational activators at their 5' ends (termed tac  ). Thus, the fbi elements inhibit translation of the full-length mRNAs by sequestration of the tac elements. The fbi elements are removed by 3' exonucleolytical processing. Mutational ana-lyses indicate that the 3' processing triggers refolding of the mRNA 5' ends into translatable configurations in which the 5' tac elements base pair with the anti-Shine–Dalgarno sequences.  相似文献   

11.
The mechanism of RNA degradation in Escherichia coli involves endonucleolytic cleavage, polyadenylation of the cleavage product by poly(A) polymerase, and exonucleolytic degradation by the exoribonucleases, polynucleotide phosphorylase (PNPase) and RNase II. The poly(A) tails are homogenous, containing only adenosines in most of the growth conditions. In the chloroplast, however, the same enzyme, PNPase, polyadenylates and degrades the RNA molecule; there is no equivalent for the E. coli poly(A) polymerase enzyme. Because cyanobacteria is a prokaryote believed to be related to the evolutionary ancestor of the chloroplast, we asked whether the molecular mechanism of RNA polyadenylation in the Synechocystis PCC6803 cyanobacteria is similar to that in E. coli or the chloroplast. We found that RNA polyadenylation in Synechocystis is similar to that in the chloroplast but different from E. coli. No poly(A) polymerase enzyme exists, and polyadenylation is performed by PNPase, resulting in heterogeneous poly(A)-rich tails. These heterogeneous tails were found in the amino acid coding region, the 5' and 3' untranslated regions of mRNAs, as well as in rRNA and the single intron located at the tRNA(fmet). Furthermore, unlike E. coli, the inactivation of PNPase or RNase II genes caused lethality. Together, our results show that the RNA polyadenylation and degradation mechanisms in cyanobacteria and chloroplast are very similar to each other but different from E. coli.  相似文献   

12.
13.
14.
The replication frequency of plasmid R1 is controlled by an unstable antisense RNA, CopA, which, by binding to its complementary target, blocks translation of the replication rate-limiting protein RepA. Since the degree of inhibition is directly correlated with the intracellular concentration of CopA, factors affecting CopA turnover can also alter plasmid copy number. We show here that PcnB (PAP I — a poly(A)polymerase of Escherichia coli  ) is such a factor. Previous studies have shown that the copy number of ColE1 is decreased in pcnB mutant strains because the stability of the RNase E processed form of RNAI, the antisense RNA regulator of ColE1 replication, is increased. We find that, analogously, the twofold reduction in R1 copy number caused by a pcnB lesion is associated with a corresponding increase in the stability of the RNase E-generated 3' cleavage product of CopA. These results suggest that CopA decay is initiated by RNase E cleavage and that PcnB is involved in the subsequent rapid decay of the 3' CopA stem-loop segment. We also find that, as predicted, under conditions in which CopA synthesis is unaffected, pcnB mutation reduces RepA translation and increases CopA stability to the same extent.  相似文献   

15.
16.
We have isolated suppressor mutants that suppress temperature-sensitive colony formation and anucleate cell production of a mukB mutation. A linkage group (smbB) of the suppressor mutations is located in the rne/ams/hmp gene encoding the processing endoribonuclease RNase E. All of the rne (smbB) mutants code for truncated RNase E polypeptides lacking a carboxyl-terminal half. The amount of MukB protein was higher in these rne mutants than that in the rne+ strain. These rne mutants grew nearly normally in the mukB+ genetic background. The copy number of plasmid pBR322 in these rne mutants was lower than that in the rne+ isogenic strain. The results suggest that these rne mutations increase the half-lives of mukB mRNA and RNAI of pBR322, the antisense RNA regulating ColE1-type plasmid replication. We have demonstrated that the wild-type RNase E protein bound to polynucleotide phosphorylase (PNPase) but a truncated RNase E polypeptide lacking the C-terminal half did not. We conclude that the C-terminal half of RNase E is not essential for viability but plays an important role for binding with PNPase. RNase E and PNPase of the multiprotein complex presumably cooperate for effective processing and turnover of specific substrates, such as mRNAs and other RNAs in vivo.  相似文献   

17.
Shin-ya Nishio  Tateo Itoh   《Plasmid》2009,62(2):83-87
Expression of the replication initiator protein (Rep) of the ColE2 plasmid is controlled by antisense RNA (RNAI). Therefore alterations in processes and/or rates of degradation of these two RNAs would affect the Rep expression. Here, we have shown that the arginine-rich RNA binding domain (ARRBD) of RNase E is important for the initial endoribonucleolytic cleavage of RNAI but dispensable for the endoribonucleolytic cleavages of the Rep mRNA. We have also shown that the protein scaffold domain of RNase E is important for successive exoribonucleolytic degradation of RNAI, suggesting involvement of RhlB, but dispensable for that of the Rep mRNA. Such differences in the initiation and successive steps of degradation between RNAI and the Rep mRNA might be important in determining their individual degradation efficiencies required for a quick response to the changes in the plasmid copy number.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号