首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The suprachiasmatic nuclei (SCN) control circadian oscillations of physiology and behavior. Measurements of electrical activity and of gene expression indicate that these heterogeneous structures are composed of both rhythmic and nonrhythmic cells. A fundamental question with regard to the organization of the circadian system is how the SCN achieve a coherent output while their constituent independent cellular oscillators express a wide range of periods. Previously, the consensus output of individual oscillators had been attributed to coupling among cells. The authors propose a model that incorporates nonrhythmic "gate" cells and rhythmic oscillator cells with a wide range of periods, that neither requires nor excludes a role for interoscillator coupling. The gate provides daily input to oscillator cells and is in turn regulated (directly or indirectly) by the oscillator cells. In the authors' model, individual oscillators with initial random phases are able to self-assemble so as to maintain cohesive rhythmic output. In this view, SCN circuits are important for self-sustained oscillation, and their network properties distinguish these nuclei from other tissues that rhythmically express clock genes. The model explains how individual SCN cells oscillate independently and yet work together to produce a coherent rhythm.  相似文献   

3.
This study is the first to demonstrate organotypic culturing of adult suprachiasmatic nuclei (SCN). This approach was used to obtain organotypic SCN cultures from adult vole brain with a previously determined state of behavioral circadian rhythmicity. We examined vasopressin (AVP) immunoreactivity in these organotypic slice cultures. AVP is one of the major neuropeptides produced by the SCN, the main mammalian circadian pacemaker. AVP immunoreactivity in the SCN of adult common voles in vivo has been shown to correlate with the variability in expression of circadian wheel-running behavior. Here, cultures prepared from circadian rhythmic and nonrhythmic voles were processed immunocytochemically for AVP. Whereas in all cultures AVP could be observed, AVP immunoreactivity differed considerably between vole SCN cultures. SCN cultures from rhythmic voles contained significantly lower numbers of AVP immunoreactive (AVPir) cells per surface area than cultures from nonrhythmic voles. The correlation between timing of behavior and AVP immunoreactivity in vitro is similar to the correlation found earlier in vivo. Apparently, such correlation depends on intrinsic AVP regulation mechanisms of SCN tissue, and not on neural or hormonal input from the environment, as present in intact brain.  相似文献   

4.
This study is the first to demonstrate organotypic culturing of adult suprachiasmatic nuclei (SCN). This approach was used to obtain organotypic SCN cultures from adult vole brain with a previously determined state of behavioral circadian rhythmicity. We examined vasopressin (AVP) immunoreactivity in these organotypic slice cultures. AVP is one of the major neuropeptides produced by the SCN, the main mammalian circadian pacemaker. AVP immunoreactivity in the SCN of adult common voles in vivo has been shown to correlate with the variability in expression of circadian wheel-running behavior. Here, cultures prepared from circadian rhythmic and nonrhythmic voles were processed immunocytochemically for AVP. Whereas in all cultures AVP could be observed, AVP immunoreactivity differed considerably between vole SCN cultures. SCN cultures from rhythmic voles contained significantly lower numbers of AVP immunoreactive (AVPir) cells per surface area than cultures from nonrhythmic voles. The correlation between timing of behavior and AVP immunoreactivity in vitro is similar to the correlation found earlier in vivo. Apparently, such correlation depends on intrinsic AVP regulation mechanisms of SCN tissue, and not on neural or hormonal input from the environment, as present in intact brain.  相似文献   

5.
6.
The mammalian pacemaker in the suprachiasmatic nucleus (SCN) contains a population of neural oscillators capable of sustaining cell-autonomous rhythms in gene expression and electrical firing. A critical question for understanding pacemaker function is how SCN oscillators are organized into a coherent tissue capable of coordinating circadian rhythms in behavior and physiology. Here we undertake a comprehensive analysis of oscillatory function across the SCN of the adult PER2::LUC mouse by developing a novel approach involving multi-position bioluminescence imaging and unbiased computational analyses. We demonstrate that there is phase heterogeneity across all three dimensions of the SCN that is intrinsically regulated and extrinsically modulated by light in a region-specific manner. By investigating the mechanistic bases of SCN phase heterogeneity, we show for the first time that phase differences are not systematically related to regional differences in period, waveform, amplitude, or brightness. Furthermore, phase differences are not related to regional differences in the expression of arginine vasopressin and vasoactive intestinal polypeptide, two key neuropeptides characterizing functionally distinct subdivisions of the SCN. The consistency of SCN spatiotemporal organization across individuals and across planes of section suggests that the precise phasing of oscillators is a robust feature of the pacemaker important for its function.  相似文献   

7.
In mammals, the suprachiasmatic nucleus (SCN) is the central circadian pacemaker that governs rhythmic fluctuations in behavior and physiology in a 24-hr cycle and synchronizes them to the external environment by daily resetting in response to light. The bilateral SCN is comprised of a mere ~20,000 neurons serving as cellular oscillators, a fact that has, until now, hindered the systematic study of the SCN on a global proteome level. Here we developed a fully automated and integrated proteomics platform, termed AutoProteome system, for an in-depth analysis of the light-responsive proteome of the murine SCN. All requisite steps for a large-scale proteomic study, including preconcentration, buffer exchanging, reduction, alkylation, digestion and online two-dimensional liquid chromatography-tandem MS analysis, are performed automatically on a standard liquid chromatography-MS system. As low as 2 ng of model protein bovine serum albumin and up to 20 μg and 200 μg of SCN proteins can be readily processed and analyzed by this system. From the SCN tissue of a single mouse, we were able to confidently identify 2131 proteins, of which 387 were light-regulated based on a spectral counts quantification approach. Bioinformatics analysis of the light-inducible proteins reveals their diverse distribution in different canonical pathways and their heavy connection in 19 protein interaction networks. The AutoProteome system identified vasopressin-neurophysin 2-copeptin and casein kinase 1 delta, both of which had been previously implicated in clock timing processes, as light-inducible proteins in the SCN. Ras-specific guanine nucleotide-releasing factor 1, ubiquitin protein ligase E3A, and X-linked ubiquitin specific protease 9, none of which had previously been implicated in SCN clock timing processes, were also identified in this study as light-inducible proteins. The AutoProteome system opens a new avenue to systematically explore the proteome-wide events that occur in the SCN, either in response to light or other stimuli, or as a consequence of its intrinsic pacemaker capacity.  相似文献   

8.
Within the suprachiasmatic nucleus (SCN) is a pacemaker that not only drives circadian rhythmicity but also directs the circadian organization of photoperiodic (seasonal) timekeeping. Recent evidence using electrophysiological, molecular, and genetic tools now strongly supports this conclusion. Important questions remain regarding the SCN's precise role(s) in the brain's photoperiodic circuits, especially among different species, and the cellular and molecular mechanisms for its photoperiodic "memory." New data suggesting that SCN "clock" genes may also function as "calendar" genes are a first step toward understanding how a photoperiodic clock is built from cycling molecules.  相似文献   

9.
The suprachiasmatic nucleus (SCN), the mammalian circadian pacemaker, receives information about ambient light levels through the retinohypothalamic tract. This information resets the molecular clock of SCN neurons, thereby entraining overt animal behavior and physiology to the solar cycle. Progress toward functional characterization of retinal influences on the SCN has been hampered by limitations of established experimental paradigms. To overcome this hurdle, the authors have developed a novel in vitro preparation of the rat retinohypothalamic circuit that maintains functional connectivity between the retinas and the SCN. This method permits whole-cell patch-clamp recordings from visually identified, light-responsive SCN neurons. Using this preparation, the authors have found that in the SCN, light-evoked responses are partly driven by the melanopsin photosensory system of the intrinsically photosensitive retinal ganglion cells and that SCN neurons exhibit light adaptation. The authors have also been able to generate this preparation from mice, demonstrating the feasibility of applying this method to transgenic mice.  相似文献   

10.
11.
The suprachiasmatic nucleus (SCN) in the hypothalamus is the site of the master circadian clock in mammals, a complex tissue composed of multiple, coupled, single-cell circadian oscillators. Mathematical modeling is now providing insights on how individual SCN cells might interact and assemble to create an integrated pacemaker that governs the circadian behavior of whole animals. In this article, we will discuss the neurobiological constraints for modeling SCN behavior, system precision, implications of cellular heterogeneity, and analysis of heterogeneously coupled oscillator networks. Mathematical approaches will be critical for better understanding intercellular interactions within the SCN.  相似文献   

12.
13.
14.
15.
The circadian clock in the suprachiasmatic nucleus of the hypothalamus (SCN) contains multiple autonomous single-cell circadian oscillators and their basic intracellular oscillatory mechanism is beginning to be identified. Less well understood is how individual SCN cells create an integrated tissue pacemaker that produces a coherent read-out to the rest of the organism. Intercellular coupling mechanisms must coordinate individual cellular periods to generate the averaged, genotype-specific circadian period of whole animals. To noninvasively dissociate this circadian oscillatory network in vivo, we (T.C. and A.D.-N.) have developed an experimental paradigm that exposes animals to exotic light-dark (LD) cycles with periods close to the limits of circadian entrainment. If individual oscillators with different periods are loosely coupled within the network, perhaps some of them would be synchronized to the external cycle while others remain unentrained. In fact, rats exposed to an artificially short 22 hr LD cycle express two stable circadian motor activity rhythms with different period lengths in individual animals. Our analysis of SCN gene expression under such conditions suggests that these two motor activity rhythms reflect the separate activities of two oscillators in the anatomically defined ventrolateral and dorsomedial SCN subdivisions. Our "forced desychronization" protocol has allowed the first stable separation of these two regional oscillators in vivo, correlating their activities to distinct behavioral outputs, and providing a powerful approach for understanding SCN tissue organization and signaling mechanisms in behaving animals.  相似文献   

16.
Within the suprachiasmatic nucleus (SCN) of the mammalian hypothalamus is a circadian pacemaker that functions as a clock. Its endogenous period is adjusted to the external 24-h light-dark cycle, primarily by light-induced phase shifts that reset the pacemaker's oscillation. Evidence using a wide variety of neurobiological and molecular genetic tools has elucidated key elements that comprise the visual input pathway for SCN photoentrainment in rodents. Important questions remain regarding the intracellular signals that reset the autoregulatory molecular loop within photoresponsive cells in the SCN's retino-recipient subdivision, as well as the intercellular coupling mechanisms that enable SCN tissue to generate phase shifts of overt behavioral and physiological circadian rhythms such as locomotion and SCN neuronal firing rate. Multiple neurotransmitters, protein kinases, and photoinducible genes add to system complexity, and we still do not fully understand how dawn and dusk light pulses ultimately produce bidirectional, advancing and delaying phase shifts for pacemaker entrainment.  相似文献   

17.
The “core” region of the suprachiasmatic nucleus (SCN), a central clock responsible for coordinating circadian rhythms, shows a daily rhythm in phosphorylation of extracellular regulated kinase (pERK). This cellular rhythm persists under constant darkness and, despite the absence of light, is dependent upon inputs from the eye. The neural signals driving this rhythmicity remain unknown and here the roles of glutamate and PACAP are examined. First, rhythmic phosphorylation of the NR1 NMDA receptor subunit (pNR1, a marker for receptor activation) was shown to coincide with SCN core pERK, with a peak at circadian time (CT) 16. Enucleation and intraocular TTX administration attenuated the peak in the pERK and pNR1 rhythms, demonstrating that activation of the NMDA receptor and ERK in the SCN core at CT16 are dependent on retinal inputs. In contrast, ERK and NR1 phosphorylation in the SCN shell region were unaffected by these treatments. Intraventricular administration of the NMDA receptor antagonist MK-801 also attenuated the peak in SCN core pERK, indicating that ERK phosphorylation in this region requires NMDA receptor activation. As PACAP is implicated in photic entrainment and is known to modulate glutamate signaling, the effects of a PAC1 receptor antagonist (PACAP 6-38) on SCN core pERK and pNR1 also were examined. PACAP 6-38 administration attenuated SCN core pERK and pNR1, suggesting that PACAP induces pERK directly, and indirectly via a modulation of NMDA receptor signaling. Together, these data indicate that, in the absence of light, retinal-mediated NMDA and PAC1 receptor activation interact to induce cellular rhythms in the SCN core. These results highlight a novel function for glutamate and PACAP release in the hamster SCN apart from their well-known roles in the induction of photic circadian clock resetting.  相似文献   

18.
The suprachiasmatic nuclei (SCN) of the mammalian hypothalamus are in important circadian pacemaker. The electrical activity of these nuclei exhibits an intrinsic circadian rhythm. The rhythmicity of the SCN is also reflected in cyclic glucose consumption and serotonin metabolism. These rhythms are entrained to the light-dark cycle via the retinohypothalamic projection. This pathway, possibly together with a visual projection via the ventral lateral geniculate nuclei, innervates light-responsive SCN cells, which exhibit the functional properties of luminance detectors. The SCN contain various peptides, acetylcholine, and serotonin either intrinsically or in terminals of afferent projections. For acetylcholine it has been demonstrated that the SCN mediate the process of photic entrainment and light suppression of pineal synthetic activity. In the case of serotonin and vasopressin it seems certain that the SCN do not depend on their presence for generating circadian rhythms or for entrainment. Both substances may modulate the intrinsic pacemaker frequency through mechanisms that remain to be established.  相似文献   

19.
In mammals, it is well established that circadian rhythms in physiology and behavior, including the rhythmic secretion of hormones, are regulated by a brain clock located in the suprachiasmatic nucleus (SCN) of the hypothalamus. While SCN regulation of gonadal hormone secretion has been amply studied, the mechanisms whereby steroid hormones affect circadian functions are less well known. This is surprising considering substantial evidence that sex hormones affect many aspects of circadian responses, and that there are significant sex differences in rhythmicity. Our previous finding that "core" and "shell" regions of the SCN differ in their expression of clock genes prompted us to examine the possibility that steroid receptors are localized to a specific compartment of the brain clock, with the discovery that the androgen receptor (AR) is concentrated in the SCN core in male mice. In the present study, we compare AR expression in female and male mice using Western blots and immunochemistry. Both of these methods indicate that ARs are more highly expressed in males than in females; gonadectomy eliminates and androgen treatment restores these sex differences. At the behavioral level, gonadectomy produces a dramatic loss of the evening activity onset bout in males, but has no such effect in females. Treatment with testosterone, or with the non-aromatizable androgen dihydrotestosterone, restores male locomotor activity and eliminates sex differences in the behavioral response. The results indicate that androgenic hormones regulate circadian responses, and suggest an SCN site of action.  相似文献   

20.
Summary Desert iguanas, Dipsosaurus dorsalis, displaying freerunning circadian locomotor rhythms in conditions of constant darkness and temperature received electrolytic lesions to the hypothalamus. The locomotor activity of those lizards (N = 9) which sustained 80% or more damage to the suprachiasmatic nucleus (SCN) became arrhythmic whereas all animals that sustained less than 35% damage to the SCN remained rhythmic, even though they sustained significant damage to nearby regions of the hypothalamus and preoptic area. These results suggest strongly that the SCN plays a role in the regulation of circadian rhythms in the desert iguana. Taken together with other evidence, they support the view that this structure is homologous to the mammalian SCN, which acts as a pacemaker in the circadian system.Abbreviations SCN suprachiasmatic nucleus - freerunning circadian period  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号