首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Receptor-mediated activation of spermatozoan guanylate cyclase   总被引:7,自引:0,他引:7  
The sea urchin egg peptides speract (Gly-Phe-Asp-Leu-Asn-Gly-Gly-Gly-Val-Gly) and resact (Cys-Val-Thr-Gly-Ala-Pro-Gly-Cys-Val-Gly-Gly-Arg-Leu-NH2) bind to spermatozoa of the homologous species (Lytechinus pictus or Arbacia punctulata, respectively) and cause transient elevations of cyclic GMP concentrations (Hansbrough, J. R., and Garbers, D. L. (1981) J. Biol. Chem. 256, 1447-1452). The addition of these peptides to spermatozoan membrane preparations caused a rapid and dramatic (up to 25-fold) activation of guanylate cyclase. The peptide-induced activation of guanylate cyclase was transient, and the subsequent decline in enzyme activity coincided with conversion of a high Mr (phosphorylated) form of guanylate cyclase to a low Mr (dephosphorylated) form. When membranes were incubated at pH 8.0, the high Mr form was converted to the low Mr form without substantial changes in basal enzyme activity. However, the peptide-stimulated activity of the low Mr form of guanylate cyclase was much less than the peptide-stimulated activity of the high Mr form. Activation of the low Mr form by peptide was not transient and persisted for at least 10 min. In addition, the pH 8.0 treatment that caused the Mr conversion of guanylate cyclase also caused an increase in the peptide-binding capacity of the membranes. We propose a model in which activation of the membrane form of guanylate cyclase is receptor-mediated; the extent of enzyme activation is modulated by its phosphorylation state.  相似文献   

2.
Receptor-mediated regulation of guanylate cyclase activity in spermatozoa   总被引:2,自引:0,他引:2  
Two peptides, speract (Gly-Phe-Asp-Leu-Asn-Gly-Gly-Gly-Val-Gly) and resact (Cys-Val-Thr-Gly-Ala-Pro-Gly-Cys-Val-Gly-Gly-Gly-Arg-Leu-NH2), which activate sperm respiration and motility and elevate cyclic GMP concentrations in a species-specific manner, were tested for effects on guanylate cyclase activity. The guanylate cyclase of sea urchin spermatozoa is a glycoprotein and it is localized entirely on the plasma membrane. When intact sea urchin sperm cells were incubated with the appropriate peptide for time periods as short as 5 s and subsequently homogenized in detergent, guanylate cyclase activity was found to be as low as 10% of the activity of cells not treated with peptide. The peptides showed complete species specificity and analogues of one peptide (speract) caused decreases in enzyme activity coincident with their receptor binding properties. The peptides did not inhibit enzyme activity when added after detergent solubilization of the enzyme. When detergent-solubilized spermatozoa were incubated at 22 degrees C, guanylate cyclase activity declined in previously nontreated cells to the peptide-treated level. The rate of decline was dependent on temperature and protein concentration. When spermatozoa were first incubated with 32P, the decrease in guanylate cyclase activity was accompanied by a shift in the apparent molecular weight of a major plasma membrane protein (160,000-150,000) and a loss of 32P label from the 160,000 band. Other agents (Monensin A, NH4Cl) which were capable of stimulating sperm respiration and motility also caused decreases of guanylate cyclase activity when added to intact but not detergent-solubilized spermatozoa. The maximal decrease in guanylate cyclase activity occurred 5-10 min after addition of these agents. The enzyme response to Monensin A required extracellular Na+ suggestive that the ionophore caused the effect on guanylate cyclase activity by virtue of its ability to catalyze Na+/H+ exchange. These studies demonstrate that guanylate cyclase activity of sperm cells can be altered by the specific interaction of egg-associated peptides with their plasma membrane receptors.  相似文献   

3.
Prolactin enhanced guanylate cyclase [E.C.4.6.1.2] two- to threefold in ovary, testis, mammary gland, liver and kidney. Dose response relationships revealed that maximal activation of this enzyme was at a concentration of one nanomolar and that increasing prolactin's concentration to the millimolar range caused no further increase in activity. There was an absolute cation requirement for prolactin's enhancement of guanylate cyclase. Calcium or manganese allowed prolactin to increase guanylate cyclase activity. Greater enhancement of this enzyme's activity by prolactin was observed when manganese was the co-factor. The data in this investigation suggest that guanylate cyclase may play a role in the mechanism of action of prolactin.  相似文献   

4.
D L Vesely  G S Levey 《Enzyme》1978,23(2):140-143
A variety of nitroso chemical carcinogens increase the activity of guanylate cyclase (EC 4.6.1.2), the enzyme catalyzing the production of guanosine 3',5'-monophosphate. In the present report, the first non-nitroso chemical carcinogen, butadiene diepoxide, was shown to activate guanylate in a variety of tissues over the concentration range 1-100 mmol/l. At 20 mmol/l concentration, increases were 2- to 17-fold above control. These observations have potential importance since guanosine 3',5'-monophosphate may be involved in cell growth and malignant transformation.  相似文献   

5.
Receptor-mediated adenylate cyclase activation in Dictyostelium discoideum.   总被引:3,自引:0,他引:3  
W Roos  G Gerisch 《FEBS letters》1976,68(2):170-172
  相似文献   

6.
Summary Gonadotropin releasing hormone enhanced guanylate cyclase [E.C.4.6.1.2] two- to threefold in pituitary, testis, liver and kidney. Dose response relationships revealed that at a concentration of 1 nanomolar, gonadotropin releasing hormone caused a maximal augmentation of guanylate cyclase activity and that increasing its concentration to the millimolar range caused no further enhancement of this enzyme. There was an absolute cation requirement for gonadotropin releasing hormone's enhancement of guanylate cyclase activity as there was no increase without any cation present. Gonadotropin releasing hormone could increase guanylate cyclase activity with either calcium or manganese in the incubation medium but more augmentation was observed with manganese. The data in this investigation suggest that guanylate cyclase may play a role in the mechanism of action of gonadotropin releasing hormone.  相似文献   

7.
Preincubation (50 min, 0 degree C) with nitroprusside increases 12-fold the activity of human platelet guanylate cyclase. The stimulating effect of nitroprusside is enhanced two-fold by dithiothreitol (2 mM) and by 60% by hemoglobin (20 micrograms/ml). Storage of guanylate cyclase preparations (105000 g supernatant) for 2-3 days at 4 degrees C causes a progressive increase of the enzyme activity and diminishes the stimulating effect of nitroprusside. After storage of guanylate cyclase preparations for 3 days, hemoglobin (20 micrograms/ml) augments the stimulating effect of nitroprusside by 130%. It is concluded that the degree of activation of guanylate cyclase by nitroprusside reflects the functional state of the enzyme.  相似文献   

8.
Substance P enhanced guanylate cyclase (E.C.4.6.1.2) two- to fourfold in pancreas, small intestine, cerebellum, liver, kidney, and lung. Dose response relationship revealed that substance P caused a maximal augmentation of guanylate cyclase activity at concentration of 1 micromolar. Increasing substance P's concentration to the millimolar range caused no further increase in activity. There was an absolute cation requirement for substance P's enhancement of guanylate cyclase activity. Substance P could increase guanylate cyclase activity with either calcium or manganese in the incubation medium but more augmentation was observed with manganese. The data in this investigation suggest that guanylate cyclase may play a role in the mechanism of action of substance P.  相似文献   

9.
The influence of polyamines (putrescine, spermidine, and spermine) on the activity of human platelet soluble guanylate cyclase and the stimulation of the enzyme by sodium nitroprusside (SNP), YC-1 and their combination was investigated. All these polyamines stimulated the guanylate cyclase activity and potentiated its activation by sodium nitroprusside. The stimulatory effects of sodium nitroprusside and putrescine (or spermine) were addidive; spermidine produced a synergistic activation and increased the additive effect. All the polyamines inhibited the enzyme activation by YC-1 and decreased the synergistic activation of SNP-stimulated guanylate cyclase activity by YC-1 with nearly the same potency. The ability of the investigated polyamines to potentiate and to increase synergistically (similar to to YC-1, but less effective) NO-dependent activation of soluble guanylate cyclase represents a new biochemical effect of these compounds; this effect should be taken into consideration, especially due to the endogenous nature of polyamines. The data obtained suggest, that specific biological functions of polyamines in the processes of growth and differentiation of cells may be also related to the ability of compounds to activate soluble guanylate cyclase and to increase intracellular cGMP level.  相似文献   

10.
Soluble guanylate cyclase   总被引:1,自引:0,他引:1  
Soluble guanylate cyclase (sGC) is a mammalian nitric oxide (NO) sensor. When NO binds to the sGC heme, its GTP cyclase activity markedly increases, thus generating cyclic GMP, which serves to regulate several cell signaling functions. A good deal is known about the kinetics and equilibrium of binding of NO to sGC, leading to a proposed multistep mechanism of sGC activation that involves at least two NO-binding sites. The crystal structure of a member of a recently discovered family of prokaryotic sGC homologues has provided important insights into structure-function relationships within the sGC family of proteins.  相似文献   

11.
Soluble guanylate cyclase of human platelets was stimulated by thiol oxidizing compounds like diamide and the reactive disulfide 4, 4'-dithiodipyridine. Activation followed a bell-shaped curve, revealing somewhat different optimum concentrations for each compound, although in both cases, higher concentrations were inhibitory. Diamide at a concentration of 100 microM transiently activated the enzyme. In the presence of moderate concentrations of diamide and 4,4'-dithiodipyridine, causing a two- to fourfold activation by themselves, the stimulatory activity of NO-releasing compounds like sodium nitroprusside was potentiated. In contrast, higher concentrations of thiol oxidizing compounds inhibited the NO-stimulated activation of soluble guanylate cyclase. Activation of guanylate cyclase was accompanied by a reduction in reduced glutathione and a concomitant formation of protein-bound glutathione (protein-SSG). Both compounds showed an activating potency as long as reduced glutathione remained, leading to inhibition of the enzyme just when all reduced glutathione was oxidized. Activation was reversible while reduced glutathione recovered and protein-SSG disappeared. We propose that diamide or reactive disulfides and other thiol oxidizing compounds inducing thiol-disulfide exchange activate soluble guanylate cyclase. In this respect partial oxidation is associated with enzyme activation, whereas massive oxidation results in loss of enzymatic activity. Physiologically, partial disulfide formation may amplify the signal toward NO as the endogenous activator of soluble guanylate cyclase.  相似文献   

12.
Soluble guanylate cyclase (sGC) is the primary receptor for the signaling agent nitric oxide (NO). Electronic absorption and resonance Raman spectroscopy were used to show that nitrosoalkanes bind to the heme of sGC to form six-coordinate, low-spin complexes. In the sGC-nitrosopentane complex, a band assigned to an Fe-N stretching vibration is observed at 543 cm(-)(1) which is similar to values reported for other six-coordinate NO-bound hemoproteins. Nitrosoalkanes activate sGC 2-6-fold and synergize with YC-1, a synthetic benzylindazole derivative, to activate the enzyme 11-47-fold. In addition, the observed off-rates of nitrosoalkanes from sGC were found to be dependent on the alkyl chain length. A linear correlation was found between the observed off-rates and the alkyl chain length which suggests that the sGC heme has a large hydrophobic distal ligand-binding pocket. Together, these data show that nitrosoalkanes are a novel class of heme-based sGC activators and suggest that heme ligation is a general requirement for YC-1 synergism.  相似文献   

13.
We have recently shown that activation of retinal guanylate cyclase (retGC) by GC-activating proteins (GCAPs) is much stronger than that previously reported and that preincubation of photoreceptor outer segment homogenates with ATP or its analogue, adenylyl imidodiphosphate (AMP-PNP), is required for the strong activation [Yamazaki, A., Yu, H., Yamazaki, M., Honkawa, H., Matsuura, I., Usukura, J., and Yamazaki, R. K. (2003) J. Biol. Chem. 278, 33150-33160]. Here we show that illuminated rhodopsin is essential for development of the AMP-PNP incubation effect. This was demonstrated by illumination of dark homogenates and treatments of illuminated homogenates with 11-cis-retinal and hydroxylamine prior to the AMP-PNP incubation and by measurement of the GCAP2 concentration required for 50% activation. We also found that the AMP-PNP incubation effect was not altered by addition of guanosine 5'-O-(3-thiotriphosphate), indicating that transducin activation is not required. It is concluded that illuminated rhodopsin is involved in retGC activation in two ways: to initiate the ATP incubation effect for preparation of retGC activation as shown here and to reduce the Ca2+ concentrations through cGMP phosphodiesterase activation as already known. These two signal pathways may be activated in a parallel and perhaps proportional manner and finally converge for strong activation of retGC by Ca2+-free GCAPs.  相似文献   

14.
Many of the effects of ANP are mediated through the elevation of cellular cGMP levels by the activation of particulate guanylate cyclase. While the stimulation of this enzyme is receptor-mediated, the molecular mechanism of activation remains unknown. In this study we present evidence that ATP as well as its analogues adenosine-5'-O-(3-thiotriphosphate) (ATP gamma S) and adenylylimidophosphate (AMPPNP) activates guanylate cyclase from rat lung membranes and markedly potentiates the effect of ANP on the enzyme. The order of potency is ATP gamma S greater than ATP greater than AMPPNP. The enzyme activation by adenine nucleotide and ANP together is much more than the sum of the individual activations, suggesting that ATP may be the physiological component essential for the ANP-stimulated guanylate cyclase activation. The ATP gamma S-stimulated guanylate cyclase activity diminishes in the presence of various kinds of detergents, suggesting either that the conformation of an ATP binding site in guanylate cyclase is altered by detergents or that protein-protein interaction may be involved in the activation of guanylate cyclase by ATP. Guanylate cyclase from rat lung membranes is poorly activated by ANP and/or ATP gamma S after removing the cytosolic and weakly membrane-associated proteins or factors by centrifugation. Pre-incubation of the membranes with ATP gamma S retains enzyme activation after membrane washing. These results suggest either that ATP gamma S stabilizes the conformation of nucleotide binding site in guanylate cyclase from denaturation by membrane washing, or that the stimulatory effect of ATP on guanylate cyclase activity may be mediated by accessory proteins or non-protein cofactors which are lost during membrane washing, but remain bound to membranes by ATP gamma S pretreatment.  相似文献   

15.
The ubiquitous heterodimeric nitric oxide (NO) receptor soluble guanylate cyclase (sGC) plays a key role in various signal transduction pathways. Binding of NO takes place at the prosthetic heme moiety at the N-terminus of the beta(1)-subunit of sGC. The induced structural changes lead to an activation of the catalytic C-terminal domain of the enzyme and to an increased conversion of GTP into the second messenger cyclic GMP (cGMP). In the present work we selected and substituted different residues of the sGC heme-binding pocket based on a sGC homology model. The generated sGC variants were tested in a cGMP reporter cell for their effect on the enzyme activation by heme-dependent (NO, BAY 41-2272) stimulators and heme-independent (BAY 58-2667) activators. The use of these experimental tools allows the enzyme's heme content to be explored in a non-invasive manner. Asp(44), Asp(45) and Phe(74) of the beta(1)-subunit were identified as being crucially important for functional enzyme activation. beta(1)Asp(45) may serve as a switch between different conformational states of sGC and point to a possible mechanism of action of the heme dependent sGC stimulator BAY 41-2272. Furthermore, our data shows that the activation profile of beta(1)IIe(145) Tyr is unchanged compared to the native enzyme, suggesting that Tyr(145) does not confer the ability to distinguish between NO and O(2). In summary, the present work further elucidated intramolecular mechanisms underlying the NO- and BAY 41-2272-mediated sGC activation and raises questions regarding the postulated role of Tyr(145) for ligand discrimination.  相似文献   

16.
Guanylate cyclase in 100,000 × g supernatant fraction prepared from the rat brain was markedly activated by superoxide dismutase. Although guanylate cyclase in pH 5.0 precipitated fraction prepared from the supernatant fraction failed to be stimulated by superoxide dismutase, the addition of ascorbate restored the responsiveness. Guanylate cyclase in the supernatant fraction which was preincubated with ascorbate oxidase also showed no response to superoxide dismutase. The superoxide dismutase-induced activation of guanylate cyclase in the supernatant fraction as well as in the ascorbate-added pH 5.0 precipitated fraction was completely eliminated by the addition of KCN, diethyldithiocarbamate, Tiron, retinol or hemoglobin.  相似文献   

17.
Light activation of guanylate cyclase at different calcium concentrations was studied in the rod outer segments of the toad retina. The enzyme becomes sensitive to calcium ions after a flash of light, showing an enhancement of its activity when Ca2+ concentration is lowered from 10(-4) M to 10(-8) M. A possible pathway of guanylate cyclase activation by light was also investigated by means of the antibody 4A to transducin. When added in excess to transducin, the antibody inhibits light activation of phosphodiesterase as well as of cyclase, suggesting a possible coupling of the two enzymes.  相似文献   

18.
ATP bound to retinal guanylate cyclase (retGC)/membranes prior to the assay (pre-binding effect) and during the assay (direct effect) further enhances retGC activity stimulated by GC-activating proteins (GCAPs). Here we investigate differences between these two effects. We found that the pre-binding effect, but not the direct effect, was absent in membranes pre-washed with Mg(2+)-free hypotonic buffers, that the pre-binding effect, but not the direct effect, was strictly limited to GCAP-stimulated retGC activity, and that these two effects were independent and additive rather than being synergistic. Pre-incubation with amiloride enhanced GCAP2-activated retGC activity in a manner similar to that by ATP pre-binding; however, amiloride did not directly stimulate the retGC activity. These results indicate that these two effects are mechanistically different. Levels of retGC activation by these effects and conditions required for these effects indicate that only the mechanism involving ATP pre-binding is physiologically relevant to retGC activation.  相似文献   

19.
Sodium arachidonate and sodium oleate increased particulate guanylate cyclase activity from homogenates of Balb 3T3 cells or rat liver. The fatty acids were about equipotent and were maximally effective at about 100 μm concentrations. Higher concentrations were less effective or inhibitory. Activation was similar in an air or nitrogen atmosphere and was unaltered by KCN, aspirin, or indomethacin. The dose-response curve was shifted to the right when arachidonate was preincubated prior to its addition to guanylate cyclase assays. Agents that facilitate fatty acid oxidation and the formation of malonyldialdehyde during preincubation such as glutathione, hemoglobin, Mn2+, Fe3+, or lipoxygenase shifted the dose-response curve further to the right. In contrast, agents that decreased or prevented arachidonate oxidation and malonyldialdehyde formation during preincubation such as butylated hydroxyanisole, propyl gallate, hydroquinone, and diphenylfuran prevented the shift in the dose-response curve or in some instances shifted the dose-response curve to the left. Activation of guanylate cyclase by arachidonate was reversed by the addition of lipoxygenase to incubations. These studies indicate that unsaturated fatty acids and not their oxidation products activate particulate enzyme from Balb 3T3 cells. The mechanism of fatty acid activation appears to be different from activation by nitro compounds. Fatty acids but not nitro compounds activated fibroblast preparations, and the effect of fatty acids in contrast to the activation by nitroprusside in liver preparations was not prevented with Lubrol PX.  相似文献   

20.
Guanylate cyclase was activated 3- to 10-fold by hemin in a dose-dependent manner in membranes prepared from homogenates of rat lung, C6 rat glioma cells, or B103 rat neuroblastoma cells. Maximum activation was observed with 50 to 100 microM hemin with higher concentrations being inhibitory. Activation was observed when Mg2+-GTP but not when Mn2+-GTP was used as the substrate. Increased enzyme activity reflected selective activation of the particulate form of guanylate cyclase; hemin inhibited the soluble form of guanylate cyclase 70 to 90% over a wide range of concentrations. Activation was not secondary to proteolysis since a variety of protease inhibitors failed to alter stimulation by hemin. Protophorphyrin IX had little effect on particulate guanylate cyclase activity and sodium borohydride almost completely abolished hemin-dependent activation. These data suggest a requirement for the ferric form of the porphyrin-metal chelate for activation. However, agents which interact with the iron nucleus of porphyrins, such as cyanide, had little effect on the ability of hemin to activate guanylate cyclase. The stimulatory effects of hemin were observed in the presence of detergents such as Lubrol-PX, and highly purified particulate enzyme could be activated to the same extent as enzyme in native membranes. These data suggest that the interaction of porphyrins with particulate guanylate cyclase is complex in nature and different from that with the soluble enzyme.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号