首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Adenylate deaminase (AMP deaminase, EC 3.5.4.6) of a high substrate specificity was purified from pig heart by chromatography on cellulose phosphate. The enzyme shows a co-operative binding of AMP [h (Hill coefficient) 2.35, with SO.5 (half-saturating substrate concentration) 5mM]. ATP and ADP act as positive effectors, lowering h to 1.55 and SO.5 to 1 mM. The addition of liposomes (phospholipid bilayers) to ATP-activated or ADP-activated enzyme causes a further shift of the h value to 1.04 and SO.5 to 0.5 mM. For ATP-activated enzyme the addition of liposomes increases Vmax. by about 100%, and for ADP-activated enzyme by 50%. Liposomes have no effect on the kinetics of AMP deaminase in the absence of ATP and ADP, and neither do they influence the inhibitory effect of orthophosphate on heart muscle AMP deaminase. Metabolic implications of these findings are discussed.  相似文献   

2.
Some regulatory properties of trout gill AMP deaminase were determined in crude extracts, before or after modification of the enzyme by the endogenous proteinase. After proteolysis, the optimal concentrations for activation by sodium and potassium were shifted from 10 to 75 mM, resulting in a large increase of enzyme activity near the physiological potassium concentration. This activation was shown to be the consequence of a much lower sensitivity of AMP deaminase to inhibition by increasing ionic strength. The modified enzyme was also less sensitive to modifications of pH and to inhibition by physiological concentrations of inorganic phosphate. When all these modifications were considered, limited proteolysis of gill AMP deaminase resulted in a 40 times increase of enzyme activity under in vivo conditions.  相似文献   

3.
Developmental changes of chicken liver AMP deaminase.   总被引:1,自引:0,他引:1       下载免费PDF全文
The AMP deaminase activity measured in crude chicken liver extract did not change significantly during development. The livers of 10- and 14-day chick embryos, 1-day, 5-, 10- and 16-week-old chickens and adult hens were examined for the existence of multiple forms of AMP deaminase. Phosphocellulose column chromatography revealed the existence of two peaks of enzyme activity in the liver of 10- and 16-week-old chickens and adult hens. Kinetic studies with the preparations of AMP deaminase revealed sigmoid-shaped substrate-saturation curves at all developmental stages and hyperbolic-shaped saturation curves for the enzyme form appearing in 10-week-old chickens. All AMP deaminases investigated were susceptible to activation by ATP and inhibition by Pi. Kinetic and regulatory properties as well as pH optima of all the enzyme preparations tested indicate that AMP deaminase isolated from the embryos and from 1-day-old chicks was similar to the form I isolated from adult hens and differed significantly from the form II of this enzyme.  相似文献   

4.
The properties of piglet cardiac AMP deaminase were determined and its regulation by pH, phosphate, nucleotides and phosphorylation is described. AMP deaminase purified from the ventricles of newborn piglet hearts displayed hyperbolic kinetics with a Km of 2 mM for 5-AMP. The enzyme had a pH optimum of 7.0 and was strongly inhibited by inorganic phosphate. ATP decreased the Km of the native enzyme 3-fold, but did not significantly block the inhibitory effects of phosphate. Kinetic parameters were not significantly altered in the presence of adenosine, cyclic AMP and NAD+, whereas, the Km was decreased by 50% in the presence of NADH. Piglet cardiac AMP deaminase was phosphorylated by protein kinase C, resulting in a 2-fold increase in Vmax with no change in Km. However, incubation with cAMP-dependent protein kinase did not affect enzyme kinetics. The 80-85 kD protein subunit of piglet cardiac AMP deaminase immunoreacted with antisera raised against human erythrocyte AMP deaminase, rabbit heart AMP deaminase and human recombinant AMP deaminase 3 (isoform E). These results are discussed in relation to in situ AMP deaminase activity in neonatal piglet heart myocytes.  相似文献   

5.
Interaction of AMP deaminase with RNA   总被引:1,自引:0,他引:1  
tRNA, 18 S and 28 S ribosomal RNAs were found to activate muscle AMP deaminase (AMP aminohydrolase, EC 3.5.4.6) but inhibit liver and heart AMP deaminases. The macromolecular structures are essential for modulation of enzyme activity, since the effects of RNA disappeared after RNAase treatment. Sucrose density centrifugation experiments clearly demonstrated the binding of purified muscle AMP deaminase to tRNA, 18 S and 28 S RNAs. The binding is reversible and responsive to alterations of pH and KCl concentration. The binding was stable at pH 5.1-7.0 in 0.1 M KCl, but most of the enzyme dissociated at pH 7.5. KCl below 0.1 M concentration had no effect on dissociation of enzyme-RNA complex, but in 0.15 M KCl the complex was partially dissociated and in 0.2 M KCl most of the enzyme was released. Various nucleotides were also effective in dissociation of the enzyme from complex. The binding is saturable and the maximum number of muscle AMP deaminase molecules bound per mol 28 S RNA was calculated to be approx. 30. Liver and heart AMP deaminases were also found to interact with RNA.  相似文献   

6.
The relative amount of modified AMP deaminase has been determined by taking advantage of the different effects of monovalent cations on the two enzymatic forms. When trout were subjected to different environmental perturbations (starvation, pollution of the water by a pesticide, transfer to sea water or reverse transfer to fresh water), modified AMP deaminase could be detected in the gill extracts. Depending on the nature of the stress and the period of experimentation, 8 to 100% of the enzyme had been modified by limited proteolysis. As a consequence of the much higher activity of the proteolyzed AMP deaminase form, a 2 to 12 times increase of the intracellular AMP deaminase activity could be expected. At the same time, limited proteolysis will modify the regulatory properties of the enzyme, since it can be estimated that 50 to 100% of the enzyme activity expressed in the cell will be an AMP deaminase form less sensitive to inhibition by inorganic phosphate and ionic strength, and to variations of the intracellular pH. Limited proteolysis will result in increased AMP deaminase activity under conditions of increased energy demand, where the concentration of inorganic phosphate is dramatically increased. The consequence should be stabilization of the adenylate energy charge.  相似文献   

7.
AMP deaminases of rat small intestine   总被引:1,自引:0,他引:1  
Phosphocellulose column chromatography revealed the existence of two forms of AMP deaminase both in whole tissue and in the intestinal epithelium. AMP deaminase I, which eluted from the column as a first activity peak, exhibited hyperbolic, nonregulatory kinetics. The substrate half-saturation constants were determined to be 0.3 and 0.7 mM at pH 6.5 and 7.2, respectively, and did not change in the presence of ATP, GTP and Pi. AMP deaminase II, which eluted from the column as a second activity peak, was strongly activated by ATP and inhibited by GTP and Pi. The S0.5 constants were 3.5 and 7.1 at pH 6.5 and 7.2, respectively. At pH 7.2 ATP (1 mM) S0.5 decreased to 2.5 mM and caused the sigmoidicity to shift to hyperbolic. The ATP half-activation constant was increased 9-fold in the presence of GTP and was not affected by Pi. Mg2+ significantly altered the effects exerted by nucleotides. The S0.5 value was lowered 10-fold in the presence of MgATP and 5-fold in the presence of MgATP, MgGTP and Pi. When MgATP was present, AMP deaminase II from rat small intestine was less susceptible to inhibition by GTP and Pi. A comparison of the kinetic properties of the enzyme, in particular the greater than 100% increase in Vmax observed in the presence of MgCl2 at low (1 mM) substrate concentration, indicates that MgATP is the true physiological activator. GuoPP[NH]P at low concentrations, in contrast to GTP, did not affect the enzyme and even activated it at concentrations above 0.2 mM. We postulate that AMP deaminase II may have a function similar to that of the rat liver enzyme. The significance of the existence of an additional, non-regulatory form of AMP deaminase in rat small intestine is discussed.  相似文献   

8.
Limited proteolysis of rabbit skeletal-muscle AMP deaminase (AMP aminohydrolase, EC 3.5.4.6) with trypsin results in conversion of the enzyme into a species which over the pH range 6.5-7.1 exhibits hyperbolic kinetics at low K+ concentration even in the absence of ADP, but shows a 20% decrease in activity at saturating substrate concentration. Analysis by sedimentation-equilibrium techniques reveals the proteolysed enzyme to be homogeneous and to have a molecular mass of 222,000 Da, indicative of a trimeric structure with a subunit molecular mass of 72,000 Da, in contrast with the tetrameric structure of the native enzyme, composed of four 79,000-Da subunits. These observations suggest a role of the 7,000-Da fragment which is removed by proteolysis in the maintenance of the three-dimensional structure of the subunit that causes the enzyme at low K+ concentration to show homotropic positive co-operativity. Study of the influence of pH, isolated from that of K+, on the kinetics of AMP deaminase reveals a highly pH-dependent inhibitory effect by ATP which is completely absent at acid pH values and abruptly manifests itself just above neutrality. This phenomenon may have significance in the metabolism of exercising muscle, in connection with the pH-dependent interaction of AMP deaminase with the thick filament.  相似文献   

9.
Reaction of rabbit skeletal muscle AMP deaminase with a low molar excess of trinitrobenzene sulfonic acid (TNBS) results in conversion of the enzyme into a species with about six trinitrophenylated lysine residues per molecule which no longer manifests positive homotropic cooperativity at pH 7.1 or at the optimal pH value of 6.5 in the presence of low K+ concentrations. Substitution of the reactive thiol groups with 5,5'-dithiobis-(2-nitrobenzoic acid) does not protect the enzyme from the TNBS-induced changes of the catalytic properties, indicating that cysteine residues modification is not at the basis of the effects of TNBS treatment on AMP deaminase and strongly suggesting the obligatory participation of lysine residues to the constitution of a regulatory anionic site to which AMP must bind to stimulate the enzyme at alkaline pH. The TNBS-treated enzyme is also completely desensitized to inhibition by ATP, but not to inhibition by GTP and stimulation by ADP. This observation suggests a connection between the operation of the hypothesized anionic activating site, responsible for positive homotropic cooperativity, and the inhibition exerted by anionic compounds that compete for the same site, among them the most efficient metabolite being probably ATP.  相似文献   

10.
Adenosine-5'-phosphate deaminase. A novel herbicide target.   总被引:2,自引:0,他引:2       下载免费PDF全文
The isolation of carbocyclic coformycin as the herbicidally active component from a fermentation of Saccharothrix species was described previously (B.D. Bush, G.V. Fitchett, D.A. Gates, D. Langley [1993] Phytochemistry 32: 737-739). Here we report that the primary mode of action of carbocyclic coformycin has been identified as inhibition of the enzyme AMP deaminase (EC 3.5.4.6) following phosphorylation at the 5' hydroxyl on the carbocyclic ring in vivo. When pea (Pisum sativum L. var Onward) seedlings are treated with carbocyclic coformycin, there is a very rapid and dramatic increase in ATP levels, indicating a perturbation in purine metabolism. Investigation of the enzymes of purine metabolism showed a decrease in the extractable activity of AMP deaminase that correlates with a strong, noncovalent association of the phosphorylated natural product with the protein. The 5'-phosphate analog of the carbocyclic coformycin was synthesized and shown to be a potent, tight binding inhibitor of AMP deaminase isolated from pea seedlings. Through the use of a synthetic radiolabeled marker, rapid conversion of carbocyclic coformycin to the 5'-phosphate analog could be demonstrated in vivo. It is proposed that inhibition of AMP deaminase leads to the death of the plant through perturbation of the intracellular ATP pool.  相似文献   

11.
AMP deaminase isoforms from human skeletal muscle can be separated chromatographically [Kaletha, Spychała & Nowak (1987) Experientia 43, 440-443]. In adult tissue nearly all the AMP deaminase activity was eluted from phosphocellulose with 0.75 M-KCl (''adult'' isoform), and the remaining activity could be eluted with 2.0 M-KCl. Conversely, most of the AMP deaminase activity from 11-week-old fetal tissue was eluted from phosphocellulose with 2.0 M-KCl (''fetal'' isoform). In the present paper the kinetic and regulatory properties of AMP deaminase extracted from 11- and 16-week-old fetal skeletal muscle are reported. The two isoforms from 11-week-old human fetus differed distinctly in these properties. The ''fetal'' isoform had about 5-fold higher half-saturation constant (S0.5) value than the ''adult'' form. It was also more sensitive to the influence of some important regulatory ligands (ADP, ATP and Pi), and exhibited a different pH/activity profile. The ''adult'' isoform of AMP deaminase from fetal muscle and the enzyme from mature muscle possessed similar kinetic and regulatory properties. This isoform seems not to be subject to any major modifications during further ontogenesis. This is not true, however, for the ''fetal'' isoform. In the muscle of 16-week-old human fetus, the ''fetal'' isoform showed a peculiar, biphasic, type of substrate-saturation kinetics. This phenomenon may reflect appearance of the next, developmentally programmed, isoform of human skeletal-muscle AMP deaminase.  相似文献   

12.
Purified rat muscle AMP deaminase (AMP aminohydrolase, EC 3.5.4.6) binds tightly to rat myosin. The binding is abolished in the presence of low concentrations of various ligands. Pyrophosphate and GTP at concentrations as low as 0.1 micrometer were effective in abolishing the interaction between two proteins. Other nucleoside triphosphates were less effective than GTP and the concentrations required for 50% inhibition were approximately 0.3 to 0.7 micrometer. ADP and AMP are effective in inhibiting the interaction between two proteins, but they are less effective than the nucleoside triphosphates; 50% inhibition occurred at 34 micrometer with ADP and at 1 mM with AMP. Creatine phosphate and inorganic phosphate showed 50% inhibition at 5 to 6 mM. All of the compounds, which affected AMP deaminase activity, were effective in abolishing the interaction of the enzyme with myosin; however, the interaction-abolishing effects of the compounds are not parallel with their inhibitory effects on the deaminase activity. Although there exist three parental isozymes of AMP deaminase in the rat, all three enzymes interacted with myosin.  相似文献   

13.
The role of fatty acid and citrate on the interaction of the AMP deaminase (EC 3.5.4.6) reaction with glycolysis was investigated using permeabilized yeast cells. (a) Linolenate and citrate inhibited glycolytic flux and the recovery of the adenylate energy charge; however, linolenate remarkably retarded the depletion of the total adenylate pool, which was not at all affected by the addition of citrate. (b) Linolenate inhibited AMP deaminase activity in situ, resulting in the subsequent decrease in ammonium production, which reduced the activity of 6-phosphofructokinase (EC 2.7.1.11), whereas linolenate itself had no ability to inhibit the phosphofructokinase activity in the presence of excess ammonium concentration. (c) Citrate inhibited the activity of phosphofructokinase in situ in the presence and absence of ammonium ion, followed by an inhibition of glycolysis; however, AMP deaminase activity was not inhibited by citrate. The inhibition of glycolysis by fatty acids can be accounted for by the lowered activity of phosphofructokinase as a result of the decreased level of ammonium ion through the inhibition of the AMP deaminase reaction by these ligands, whereas the effect of citrate on glycolysis is a direct inhibition of phosphofructokinase without affecting the activity of AMP deaminase. Fatty acid and citrate, a principal metabolic product of fatty acid oxidation, can be responsible for the control of glycolysis in two different manners.  相似文献   

14.
AMP deaminase was completely solubilized from rat skeletal muscle with 50 mM Tris-HCl buffer (pH 7.0) containing KCl at a concentration of 0.3 M or more. The purified enzyme was found to be bound to rat muscle myosin or actomyosin, but not to F-actin at KCl concentrations of less than 0.3 M. Kinetic analysis indicated that 1 mol of AMP deaminase was bound to 3 mol of myosin and that the dissociation constant (Kd) of this binding was 0.06 micrometer. It was also shown that AMP deaminase from muscle interacted mainly with the light meromyosin portion of the myosin molecule. This finding differs from that of Ashby and coworkers on rabbit muscle AMP deaminase, probably due to a difference in the properties of rat and rabbit muscle AMP deaminase. AMP deaminase isozymes from rat liver, kidney and cardiac muscle did not interact with rat muscle myosin. The physiological significance of this binding of AMP deaminase to myosin is discussed.  相似文献   

15.
The physiological role of the inhibition of AMP deaminase (EC 3.5.4.6) by Pi was analyzed using permeabilized yeast cells. (a) Fructose 1,6-bisphosphatase (EC 3.1.3.11) was inhibited only a little by AMP, which was readily degraded by AMP deaminase under the in situ conditions. (b) The addition of Pi, which showed no direct effect on fructose 1,6-bisphosphatase, effectively enhanced the inhibition of the enzyme by AMP increased through the inhibition of AMP deaminase. (c) Pi activated phosphofructokinase (EC 2.7.1.11) and inhibited AMP deaminase activity. AMP deaminase reaction can act as a control system of fructose 1,6-bisphosphatase activity and gluconeogenesis/glycolysis reaction through the change in the AMP level. Pi may contribute to the stimulation of glycolysis through the inhibition of fructose 1,6-bisphosphatase by the increase in AMP in addition to the direct activation of phosphofructokinase.  相似文献   

16.
Phosphofructokinase has been purified from pig kidney by extraction with phosphate buffer at pH 8, followed by alcohol treatment, affinity chromatography on matrix-bound Cibacron blue F3G-A, and gel chromatography on Sepharose 6B. Using sodium dodecyl sulphate electrophoresis the enzyme was found to be homogeneous and to have a specific activity of about 80 units/mg protein. Like other phosphofructokinases, at pH 7.0 the enzyme exhibits a sigmoidal dependence in its activity on the fructose 6-phosphate concentration and is strongly inhibited by ATP. The degree of citrate inhibition is influenced by the concentration of the two substrates. ATP strengthens and fructose 6-phosphate relieves the inhibition by citrate. AMP and cAMP are able to overcome the ATP inhibition. The ADP activation curve is biphasic. The molecular weight of the subunit of pig kidney phosphofructokinase was determined to be 88 000 by means of sodium dodecyl sulphate electrophoresis.  相似文献   

17.
Regulation of platelet AMP deaminase activity in situ.   总被引:1,自引:0,他引:1       下载免费PDF全文
The regulation of platelet AMP deaminase activity by ATP, GTP and phosphate was studied in human platelets in situ, and in vitro after partial purification. In intact platelets, a similar 50% decrease in cytosolic ATP was induced by either glucose starvation or treatment with H2O2. During starvation, AMP deaminase was in the inhibited state, as ATP consumption was mostly balanced by the accumulation of AMP. During H2O2 treatment, however, the enzyme was in the stimulated state, as the AMP formed was almost completely deaminated to IMP. Cytosolic GTP fell by 40-50% in both starvation and H2O2 treatment. In contrast, intracellular phosphate was 4-5-fold higher in starved than in H2O2-treated cells. These data point to phosphate as the main regulator of AMP deaminase activity in situ. This conclusion was verified by kinetic analysis of partially purified AMP deaminase. At near-physiological concentrations of MgATP, MgGTP and phosphate, the S0.5 (substrate half-saturation constant) for AMP was 0.35 mM. Half-maximal stimulation by MgATP occurred at a concn. between 2 and 3 mM. This stimulation was antagonized by the inhibitory effects of phosphate (IC50 = 2.0 mM) and MgGTP (IC50 = 0.2-0.3 mM), which acted in synergism (IC50 is the concentration causing 50% inhibition). We conclude that the difference in adenylate catabolism between starved and H2O2-treated platelets is due to the distinct phosphate concentrations. During starvation, refeeding and H2O2 treatment, the values of the adenylate charge and the phosphorylation potential were kept closely co-ordinated, which may be effected by AMP deaminase.  相似文献   

18.
Phosphocellulose chromatography of pigeon leg muscle extract revealed the existence of two well-separated forms of AMP deaminase. This was in contrast to the pigeon breast muscle extract, which yielded only one form. The two leg muscle enzyme isoforms manifested similar kinetic and regulatory properties. They were activated by very low concentration of potassium ions and demonstrated similar patterns of pH and effector dependence. At pH 6.5, as well as at other pH values tested. ADP and ATP slightly stimulated, whereas GTP and orthophosphate inhibited the two molecular forms of pigeons leg muscle enzyme. Surprisingly, the molecular form of AMP deaminase present in pigeon breast muscle was inhibited by ATP at all pH values tested. The kinetic and regulatory properties of the three molecular forms of pigeon skeletal muscle AMP deaminase examined do not resemble those which have been described for pigeon heart muscle enzyme.  相似文献   

19.
Summary AMP deaminase, the activity that catalyzes the deamination of AMP to form IMP and NH3 has been measured in Dictyostelium discoideum. A new procedure to assay the activity of this enzyme was developed using formycin 5-monophosphate, a fluorescent analog of AMP as the substrate, and ionpaired reverse phase HPLC to separate the reactants and products. Quantitation of the formycin containing compounds was accomplished at 290 nm. At this wavelength adenosine containing compounds were not detected and activity could be monitored in the presence of its activator ATP. The AMP deaminase activity in vegetative cells was 7.4 nmols/min/mg proteins while the activity in cells measured at 2 and 6 hrs after starvation-induced growth-arrest was 376 nmols/min/mg protein... a 51-fold increase. When vegetative cells were treated with hadacidin, a drug that restricts de novo AMP synthesis and pinocytosis, the activity of the AMP deaminase was 511 nmols/min/mg protein... a 70-fold increase compared to that in untreated vegetative cells. Smaller increases were noted following the inhibition of growth with the drugs cerulenin and vinblastine, as well as after the inhibition of de novo GMP synthesis with the drug mycophenolic acid or the partial inhibition of de novo AMP synthesis with analogs of hadacidin, N-hydroxyglycine and N-formylglycine. In addition, when the activity of two other enzymes involved in purine metabolism, namely adenosine kinase and hypoxanthine-guanine phosphoribosyl transferase, was measured in vegetative cells, and the activity of both compared to that measured in starvation and hadacidin induced growth-arrested cells, showed no significant changes. These data suggest that the changes in the activity of the AMP deaminase are in response to nutrient deprivation and further, that as a consequence of the increase in AMP deaminase activity, ammonia will be produced and an increase in pH should follow. The production of ammonia and its effect on development implicates the AMP deaminase in the early differentiation of this organism.  相似文献   

20.
AMP deaminase [EC 3.5.6.4] purified from chicken erythrocytes was inhibited by phytic acid (inositol hexaphosphate), which is the principal organic phosphate in chicken red cells. Kinetic analysis has indicated that this inhibition is of an allosteric type. The estimated Ki value was within the normal range of phytic acid concentration, suggesting that this compound acts as a physiological effector. Divalent cations such as Ca2+ and Mg2+ were shown to affect AMP deaminase by potentiating inhibition by lower concentrations of phytic acid, and by relieving the inhibition at higher concentrations of phytic acid. These results suggests that Ca2+ and Mg2+ can modify the inhibition of AMP deaminase by phytic acid in chicken red cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号