首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Novikov  V. V.  Yablokova  E. V.  Fesenko  E. E. 《Biophysics》2016,61(6):959-962

It was shown that a 1-h-long exposure of mouse peritoneal neutrophils to a combination of a weak constant magnetic field (42 μT) and low-frequency alternating magnetic fields collinear to the weak constant magnetic field (the sum of the frequencies 1.0, 4.4, and 16.5 Hz; amplitude, 0.86 μT) at physiological temperatures caused an increase in the intracellular production of reactive oxygen species, as measured by the changes in fluorescence of the products of 2,7-dichlorodihydrofluorescein and dihydrorhodamine 123 oxidation. The effect of weak magnetic fields was significantly more pronounced in the presence of low concentrations of respiratory burst activators (N-formyl-Met–Leu–Phe or phorbol 12-meristate-13-acetate).

  相似文献   

2.
DNA isolated from liver of healthy and tumor-bearing (sarcoma 45) rats was irradiated in water-salt solution with weak microwaves (64.5 GHz, 50 μW/cm2). The heat stability of DNA increased with irradiation time (a raise of 1.5°C in T m for “tumor” DNA after 90 min, without changes in ΔT), which may be associated with dehydration of the surrounding Na+ ions.  相似文献   

3.
The purpose of this study was to investigate the effects of 9450-MHz microwaves and extremely low frequency magnetic fields (ELFMF) on the phagocytic activity of rat macrophages in control rats and those treated with vitamins C and E. In the microwave group, 24 albino Wistar rats were exposed to microwaves (2.65 mW/cm2, specific absorption rate [SAR]: 1.80 W/kg) for 1 h/day for 21 days. Thirty-two albino Wistar rats were divided into four groups (one control, three experimental) (n = 8). The rats in the first exposure group were only exposed to microwaves for 1 h per day for 21 days. In addition to exposure with microwaves as in the first experimental group, vitamins E and C (150 mg/kg/day) were injected intraperitoneally into the rats in the second and third exposure groups, respectively. In the magnetic field exposure group, 26 albino Wistar rats were divided into two groups: the sham (n = 12) and exposed groups (n = 14). The rats in the experimental group were exposed to ELFMF (50 Hz, 0.75 mT) for 3 h/day for 3 weeks. After completing the exposure period, the rats were sacrificed under ketalar anesthesia. The viability of isolated alveolar macrophages of rats in the microwave and ELF groups was determined and compared to sham groups. The results were analyzed with the Mann–Whitney U test. In the microwave group, the phagocytic activity in the experimental groups was found to be higher than the sham groups. However, with phagocytic activity in rats treated with both microwaves and vitamins, only the vitamin C group was significant (p < 0.05). In the magnetic field group, the phagocytic activity of rats exposed to ELFMF was lower than that of the sham group, but the results were not significant (p > 0.05). Rectal temperatures of microwaveexposed groups were found to be significantly higher compared to the control group (p < 0.05).  相似文献   

4.
The effect of fractionated exposure to low-intensity microwaves (8.15-18 GHz, 1 microW/cm2, 1.5 h daily for 7 days) and combined weak magnetic field (constant 65 1 microT; alternating--100 nT, 3-10 Hz) on the production of tumor necrosis factor in macrophages of mice with experimental solid tumors produced by transplantation of Ehrlich ascites carcinoma was studied. It was found that exposure of mice to both microwaves and magnetic field enhanced the adaptive response of the organism to the onset of tumor growth: the production of tumor necrosis factor in peritoneal macrophages of tumor-bearing mice was higher than in unexposed mice.  相似文献   

5.
The combined effect of the zinc magnetic isotope 67Zn and weak magnetic field 25–35 mT causes a 2–4-fold increase in the colony-forming ability of bacteria E. coli in comparison with the nonmagnetic isotopes 64, 66Zn. The effects of magnetic field in the range of 2.2–8 mT were detected for all bacteria regardless of the zinc-isotope enrichment of the media. This indicates the sensitivity of intracellular processes to weak magnetic fields. An increase in the ATP concentration in E. coli cells was only detected for the bacteria grown on the medium with the magnetic zinc isotope in the range of 2.2–4.2 mT. The obtained data confirm the existence of stages of intracellular enzymatic processes that are sensitive to magnetic fields and magnetic moments of atomic nuclei.  相似文献   

6.
The intracellular calcium chelator 1,2-bis(2-aminophenoxy)ethane N,N,N′,N′-tetraacetic acid acetoxymethyl ester (BAPTA AM) used at low concentrations (1.0 and 2.5 μM) was shown to block the priming effect of weak combined static (42 μT) and low-frequency collinear alternating (1.0, 4.4, and 16.5 Hz; 0.86 μT) magnetic fields. This blockage was inferred from a greater increase in chemiluminescence observed for a mouse neutrophil suspension exposed to combined magnetic fields in response to the bacterial peptide N-formyl–Met–Leu–Phe added in the presence of luminol. Similar results were obtained for the effect of BAPTA AM on luminol-dependent chemiluminescence of whole blood. The priming effect of weak combined magnetic fields on the respiratory burst in neutrophils did not depend on the presence of extracellular Ca2+ and was not affected by the hydroxyl radical scavenger dimethyl sulfoxide used at 0.025–1.0 mM.  相似文献   

7.
We studied the influence of a weak, extremely low-frequency magnetic field (MF) with a frequency of 50 Hz and a peak amplitude of 103 μT and aluminum solution (in the form of AlCl3) at different concentrations (0, 40, 70, 100, 130, 160, 400, 800, 2000, and 5000 μM) on the growth of spruce seedlings (Picea abies). The results showed that stimulatory and statistically significant MF effects on the growth of seedlings were observed only with a 100-μM aluminum solution. Slight stimulative effects were also observed within the range of concentrations between 40 and 160 μM Al3+ (all the stimulated groups taken together). Germination and fresh weight were not significantly influenced. At these concentrations the aluminum solution alone (without MF) or the MF alone (without Al3+) did not influence the growth parameters. These results suggest the importance of synergistic action of the MF with environmental factors as well as the existence of “physiologic windows” in addition to the frequency and power ones.  相似文献   

8.
The effects of weak external electric fields (1.5–3 V, 30–60 μA) on bile salt secretion by jji situ rat liver were studied after interruption (experiment A) and restoration (experiment B) of the enterohepatic bile salt cycle. In experiment A, bile salt tracer was injected in bolus 3 hr after application of the electric field (14C-TC, 14C-CA, or 14C-DCA). In experiment B, 36 μmoles/h of TC or CA were infused 150 min after application of the electric field until the end of the experiment. A bolus (14C-TC and 14C-CA) was injected 170 min after application of the electric field. The hepatic taurine pool was prelabeled in both experiments.

Application of electric fields delayed secretion of 14C-TC into the bile. This delay was longer at 60 μA than at 30 μA Neither field had any effect on 3H-tauroconjugation. Electric fields also led to the formation of osmiophilic globules in hepatocytes and, especially in experiment B, collagen fibers in intracellular spaces. Thus electric fields may provoke changes in plasmic membranes probably in connection with those in the extracellular matrix.  相似文献   

9.
We have previously reported that environmental-level magnetic fields (1.2 μT [12 milligauss], 60 Hz) block the growth inhibition of the hormone melatonin (10−9 M) on MCF-7 human breast cancer cells in vitro. We now report that the same 1.2 μT, 60 Hz magnetic fields significantly block the growth inhibitory action of pharmacological levels of tamoxifen (10−7 M). In biophysical studies we have taken advantage of Faraday's Law of Current Induction and tested whether the 1.2 μT magnetic field or the associated induced electric field is responsible for this field effect on melatonin and tamoxifen. We observe that the magnetic field component is associated with the field blocking effect on melatonin and tamoxifen function. To our knowledge the tamoxifen studies represent the first experimental evidence for an environmental-level magnetic field modification of drug interaction with human breast cancer cells. Together, these findings provide support to the theory that environmental-level magnetic fields can act to modify the action of a drug or hormone on regulation of cell proliferation. Melatonin and tamoxifen may act through different biological pathways to down-regulate cell growth, and further studies are required to identify a specific biological site of interaction for the 1.2 μT magnetic field. Bioelectromagnetics 18:555–562, 1997. Published 1997 Wiley-Liss, Inc.
  • 1 This article is a US Government work and, as such, is in the public domain in the United States of America.
  •   相似文献   

    10.
    The effects of electromagnetic fields on lichens were investigated. Field experiments of long duration (1–3 years) were combined with laboratory experiments and theoretical considerations. Samples of the lichen species Parmelia tiliacea and Hypogymnia physodes were exposed to microwaves (2.45 GHz; 0.2, 5, and 50 m W/cm2; and control). Both species showed a substantially reduced growth rate at 50 m W/cm2. A differentiation between thermal and nonthermal effects was not possible. Temperature measurements on lichens exposed to microwaves (2.45 GHz, 50 m W/cm2) showed a substantial increase in the surface temperature and an accelerated drying process. The thermal effect of microwave on lichens was verified. The exposure of lichens of both species was repeated near a short-wave broadcast transmitter (9.5 MHz, amplitude modulated; maximum field strength 235 V/m, 332 mA/m). No visible effects on the exposed lichens were detected. At this frequency, no thermal effects were expected, and the experimental results support this hypothesis. Theoretical estimates based on climatic data and literature showed that the growth reductions in the initial experiments could very likely have been caused by drying of the lichens from the heating with microwaves. The results of the other experiments support the hypothesis that the response of the lichens exposed to microwaves was mainly due to thermal effects and that there is a low probability of nonthermal effects. © 1996 Wiley-Liss, Inc.  相似文献   

    11.
    Microwave‐induced corneal endothelial damage was reported to have a low threshold (2.6 W/kg), and vasoactive ophthalmologic medications lowered the threshold by a factor of 10–0.26 W/kg. In an attempt to confirm these observations, four adult male Rhesus monkeys (Macaca mulatta) under propofol anesthesia were exposed to pulsed microwaves in the far field of a 2.8 GHz signal (1.43 ± 0.06 µs pulse width, 34 Hz pulse repetition frequency, 13.0 mW/cm2 spatial and temporal average, and 464 W/cm2 spatial and temporal peak (291 W/cm2 square wave equivalent) power densities). Corneal‐specific absorption rate was 5.07 W/kg (0.39 W/kg/mW/cm2). The exposure resulted in a 1.0–1.2 °C increase in eyelid temperature. In Experiment I, exposures were 4 h/day, 3 days/week for 3 weeks (nine exposures and 36 h total). In Experiment II, these subjects were pretreated with 0.5% Timolol maleate and 0.005% Xalatan® followed by 3 or 7 4‐h pulsed microwave exposures. Under ketamine–xylazine anesthesia, a non‐contact specular microscope was used to obtain corneal endothelium images, corneal endothelial cell density, and pachymetry at the center and four peripheral areas of the cornea. Ophthalmologic measurements were done before and 7, 30, 90, and 180 days after exposures. Pulsed microwave exposure did not cause alterations in corneal endothelial cell density and corneal thickness with or without ophthalmologic drugs. Therefore, previously reported changes in the cornea exposed to pulsed microwaves were not confirmed at exposure levels that are more than an order of magnitude higher. Bioelectromagnetics 31:324–333, 2010. Published 2010 Wiley‐Liss, Inc.  相似文献   

    12.
    Sonicated egg phosphatidylcholine vesicles loaded with 24Na+ were exposed at 20mW to a frequency-modulated (3 Hz) microwave field in the range of 2350 to 2550 MHz, or at 80 mW to a 2450-MHz CW (continuous wave) field, in a waveguide. The vesicle suspension absorbed microwaves at about 1 mW/ml and 25 mW/ml (CW experiment). The average temperature change of the irradiated suspension was < 0.1 °C from ambient. Leakage of 24Na+ from the vesicles for up to 19 hours was measured. No difference was noted in the movement of 24Na+ from the vesicles in the irradiated and control dispersions.  相似文献   

    13.
    Ermakov  A. M.  Lednev  V. V. 《Biophysics》2010,55(4):633-636
    The effects of weak combined magnetic fields adjusted to the parametric resonance for Ca2+ and K+ and extremely weak alternating magnetic field on the metamorphosis of the mealworm beetle Tenebrio molitor have been studied. It was shown that the exposure of pupas of insects to all above-indicated types of fields stimulates the metamorphosis. However, after the exposure to weak combined magnetic fields adjusted to the parametric resonance for Ca2+ and K+, the number of insects with anomalies increases, which is not observed by the action of the weak alternating magnetic field.  相似文献   

    14.
    Attempts to establish extremely low-frequency (ELF) threshold sensitivity limits in biological systems are presently based on estimates of thermal noise in the cell membrane. The Weaver-Astumian (Science 247:459–462, 1990) threshold (8 × 10?3 V/m) should in principle also apply to electric fields produced by Faraday induction. However, the 60-Hz magnetic field required to induce an electric field of 8 × 10?3 V/m is improbably large and at variance with the experimental facts, implying either that Faraday induction is not the mode of weak ELF magnetic field biointeractions or that such interactions have nothing to do with the cell membrane, which constitutes only 1 % of the cell volume. We explore the possibility that magnetic field interactions are connected to the periodic changes in free calcium concentration associated with the cellular Ca2+ oscillator (CaO). Estimates of the free energy associated with the CaO reveal cyclic voltage changes of the order of 20 mV, suggesting that already existing electric fields within the cytoplasm may be capable of interacting with externally applied magnetic fields. We further hypothesize that CaO frequencies can be reinforced or driven into narrower passbands by weak external ELF signals acting on elements in the Ca2+ signaling pathway, e.g., via the calmodulin molecule.  相似文献   

    15.
    Escherichia coli JM83 {F? ara Δ(lac-proAB) rpsL [?80dΔ(lacZ)M15]} in midlog growth phase at 30 °C were exposed to 60 Hz sinusoidal magnetic field of 3 mT of nonuniform diverging flux, inducing a nonuniform electric field with a maximum intensity of 32 μV/cm using an inductor coil. Exposed and unexposed control cells were maintained at 30.8 ± 0.1 °C and 30.5 ± 0.1 °C, respectively. Quadruplicate samples of exposed and unexposed E. coli cells were simultaneously radiolabeled with 35S-L-methionine at 10 min intervals over 2 hr. Radiochemical incorporation into proteins was analyzed via liquid scintillation counting and by denaturing 12.5% polyacrylamide gel electrophoresis. The results showed that E. coli exposed to a 60 Hz magnetic field of 3 mT exhibited no qualitative or quantitative changes in protein synthesis compared to unexposed cells. Thus small prokaryotic cells (less than 2 μm × 0.5 μm) under constant-temperature conditions do not alter their protein synthesis following exposure to 60 Hz magnetic fields at levels at 3 mT. © 1994 Wiley-Liss, Inc.  相似文献   

    16.
    The effect of exposure of single rat pituitary cells to 50 Hz sine wave magnetic fields of various strengths on the intracellular free Ca2+ concentration ([Ca2+]i) was studied by using dual-emission microfluorimetry, using indo-1 as probe. A 30 min exposure of the cells to vertical 50 μT peak magnetic field triggered a long-lasting increase in [Ca2+]i from a basal value of about 185 ± 4 nM to 326 ± 41 nM (S.E.; n = 150). The vertical and horizontal components of the static magnetic field were 57 and 15 μT, respectively. The 50 Hz ambient magnetic field was always below 0.1 μT rms. The effect was observed both at 25 ± 2 °C and at 37 ± 2 °C. Responsive cells, for which [Ca2+]i rose to values above 309 nM, were identified as lactotrophs and represented 29% of the total pituitaries. [Ca2+]i increase, for the most part, was due to Ca2+ influx through voltage-dependent dihydropiridine-sensitive calcium channels inhibited by PN 200-110. However, neither Ca2+ channel blockers nor removal of Ca2+ from the external medium during exposure completely prevented the field-induced [Ca2+]i increase. Additional experiments using an MTT colorimetric assay showed that alteration of Ca2+ homeostasis of lactotrophs was associated with impairment of some mitochondrial processes. © Wiley-Liss, Inc.  相似文献   

    17.
    In inhomogeneous (static) magnetic fields close contact between ‘magnetic’ human erythrocytes was established. The cells were made magnetic by incubating them in a medium containing small Fe3O4-particles which adsorbed to the outer membrane surface. Fusion was induced by applying two electric field pulses (field strength: 8.5 kV · cm?1; duration: 60 μs) to the magnetically collected cells. This procedure allowed the use of electrically conductive media (3 · 10?1 Ω?1 · cm?1). Fusion of red blood cells occured very often. If cell suspensions of high density were used fusion resulted in the formation of giant red blood cells with osmotically intact membranes.  相似文献   

    18.
    (1) In photosystem I (PS I) particles in the presence of dithionite and intense background illumination at 290 K, an external magnetic field (0–0.22 T) induced an increase, ΔF, of the low chlorophyll a emission yield, F (ΔFF ? 1–1.5%). Half the effect was obtained at about 35–60 mT and saturation occurred for magnetic fields higher than about 0.15 T. In the absence of dithionite, no field-induced increase was observed. Cooling to 77 K decreased ΔF at 685 nm, but not at 735 nm, to zero. Measuring the emission spectra of F and ΔF, using continuous excitation light, at 82, 167 and 278 K indicated that the spectra of F and ΔF have about the same maximum at about 730, 725 and 700 nm, respectively. However, the spectra of ΔF show more long-wavelength emission than the corresponding spectra of F. (2) Only in the presence of dithionite and with (or after) background illumination, was a luminescence (delayed fluorescence) component observed at 735 nm, after a 15 ns laser flash (530 nm), that decayed in about 0.1 μs at room temperature and in approx. 0.2 μs at 77 K. A magnetic field of 0.22 T caused an appreciable increase in luminescence intensity after 250 ns, probably mainly caused by an increase in decay time. The emission spectra of the magnetic field-induced increase of luminescence, ΔL, at 82, 167 and 278 K coincided within experimental error with those of ΔF mentioned above. The temperature dependence of ΔF and ΔL was found to be nearly the same, both at 685 and at 735 nm. (3) Analogously to the proposal concerning the 0.15 μs luminescence in photosystem II (Sonneveld, A., Duysens, L.N.M. and Moerdijk, A. (1980) Proc. Natl. Acad. Sci. U.S.A. 77, 5889–5893), we propose that recombination of the oxidized primary donor P-700+ and the reduced acceptor A?, probably A?1, of PS I causes the observed fast luminescence. The effect of an external magnetic field on this emission may be explained by the radical pair mechanism. The field-induced increase of the 0.1–0.2 μs luminescence seems to be at least in large part responsible for the observed increase of the total (prompt + delayed) emission measured during continuous illumination in the presence of a magnetic field.  相似文献   

    19.
    《Inorganica chimica acta》1988,148(2):265-272
    The magnetic and luminescence characteristics of trimorphic homodinuclear macrocyclic complexes of lanthanides and a 2:2 phenolate Schiff's base L, derived from 2,6-diformyl-p-cresol and triethylenetetramine were determined. The complexes of Pr3+ exhibit non-Curie-Weiss temperature dependent magnetic susceptibilities for which satisfactory fits to an axial relationship depends on crystal field splitting and a weak binuclear Pr3+Pr3+ antiferromagnetic interaction. The exchange interaction parameters are zJ′ = −2.2, −4.4 and −7.0 cm −1 for ‘off-white’ Pr2L(NO3)4·2H2O, ‘yellow’ Pr2L(NO3)4, and ‘orange’ Pr2L(NO3)2(OH)2, respectively. In contrast, magnetic susceptibilities of the Ln2L(NO3)3(OH) complexes (Ln = Dy, Ho) follow Curie-Weiss behavior over the entire temperature range (6 K to 300 K). The complexes of closed shell ions La3+, Lu3+, Y3+ and those of the half filled shell ion Gd3+ exhibit a strong ligand fluorescence in the 450 nm to 650 nm range with decay times at 77 K of 5–8 ns for Ln≠Gd or 2–4 ns for Ln = Gd. The complexes of Gd3+ also exhibit a phosphorescence at 600 nm (decay time ∼ 200 μs). The complexes containing Ce3+, Eu3+, Tb3+ and Er3+ show very weak ligand luminescence indicative of effective quenching processes. Sensitized emission from the lanthanide ion is observed only with the Eu3+ complexes (5Do7Fj transitions). The emission lifetimes are on the order of 250 μs in the pure Eu3+ complexes. The emission decay curves from dilute samples of Eu3+ in ‘off-white’ La2L(NO3)4nH2O show a noticeable rise time as well as a biphasic decay (fast component ∼ 400 μs; slow component ∼ 2500 μs). The luminescing states of L and Eu3+ have a common excitation spectrum which is similar to the electronic absorption spectrum of L indicating that ligand-to-metal ion energy transfer processes are dominant. Overall the result if this study suggest that the spectral properties of the complexes are determined by the coordination mode of the lanthanide ions to the Schiff base portion of macrocyclic ligand.  相似文献   

    20.
    Extremely-low-frequency (ELF), low-intensity magnetic fields have been shown to influence cell signaling processes in a variety of systems, both in vivo and in vitro. Similar effects have been demonstrated for nervous system development and neurite outgrowth. We report that regeneration in planaria, which incorporates many of these processes, is also affected by ELF magnetic fields. The rate of cephalic regeneration, reflected by the mean regeneration time (MRT), for planaria populations regenerating under continuous exposure to combined DC (78.4 μT) and AC (60.0 Hz at 10.0 μT peak) magnetic fields applied in parallel was found to be significantly delayed (P ? 0.001) by 48 ± 1 h relative to two different types of control populations (MRT ? 140 ± 12 h). One control population was exposed to only the AC component of this field combination, while the other experienced only the ambient geomagnetic field. All measurements were conducted in a low-gradient, low-noise magnetics laboratory under well-maintained temperature conditions. This delay in regeneration was shown to be dependent on the planaria having a fixed orientation with respect to the magnetic field vectors. Results also indicate that this orientation-dependent transduction process does not result from Faraday induction but is consistent with a Ca2+ cyclotron resonance mechanism. Data interpretation also permits the tentative conclusion that the effect results from an inhibition of events at an early stage in the regeneration process before the onset of proliferation and differentiation. © 1995 Wiley-Liss, Inc.  相似文献   

    设为首页 | 免责声明 | 关于勤云 | 加入收藏

    Copyright©北京勤云科技发展有限公司  京ICP备09084417号