首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The plastid gene psbC encodes the CP43 subunit of PSII. Most psbC mRNAs of many organisms possess two possible initiation codons, AUG and GUG, and their coding regions are generally annotated from the upstream AUG. Using a chloroplast in vitro translation system, we show here that translation of the tobacco plastid psbC mRNA initiates from the GUG. This mRNA possesses a long Shine-Dalgarno (SD)-like sequence, GAGGAGGU, nine nucleotides upstream of the GUG. Point mutations in this sequence abolished translation, suggesting that a strong interaction between this extended SD-like sequence and the 3' end of 16S rRNA facilitates translation initiation from the GUG.  相似文献   

2.
We have previously demonstrated that the targeting signal ofpumpkin catalase, Cat1, is an internal PTS1 (peroxisomal targetingsignal 1)-like sequence, QKL, located at –13 to –11from the C-terminus, which is different from the typical PTS1SKL motif located in the C-terminus. Here we show that Cat1import into peroxisome is dependent on the cytosolic PTS receptor,Pex5p, in Arabidopsis, similar to typical PTS1 import, and thatother components for transport of peroxisomal matrix proteinssuch as Pex14p, Pex13p, Pex12p and Pex10p also contribute tothe import of Cat1. Interestingly, however, we found that Cat1interacts with the N-terminal domain of Pex5p, but not the C-terminaldomain for interaction with the typical PTS1, revealing thatPex5p recognizes Cat1 in a manner distinct from typical PTS1.  相似文献   

3.
Thirteen tobacco calmodulin (CaM) genes fall into three distinct amino acid homology types. Wound-inducible type I isoforms NtCaM1 and 2 were moderately induced by tobacco mosaic virus (TMV)-mediated hypersensitive reaction, and the type III isoform NtCaM13 was highly induced, while the type II isoforms NtCaM3-NtCaM12 showed little response. Type I and III knockdown tobacco lines were generated using inverted repeat sequences from NtCaM1 and 13, respectively, to evaluate the contribution of pathogen-induced calmodulins (CaMs) to disease resistance. After specific reduction of type I and III CaM gene expression was confirmed in both transgenic lines, we analyzed the response to TMV infection, and found that TMV susceptibility was slightly enhanced in type III CaM knockdown lines compared with the control line. Resistance to a compatible strain of the bacterial pathogen Ralstonia solanacearum, and fungal pathogens Rhizoctonia solani and Pythium aphanidermatum was significantly lower in type III but not in type I CaM knockdown plants. Expression of jasmonic acid (JA)- and/or ethylene-inducible basic PR genes was not affected in these lines, suggesting that type III CaM isoforms are probably involved in basal defense against necrotrophic pathogens in a manner that is independent of JA and ethylene signaling.  相似文献   

4.
5.
6.
Dihydrosphingosine C4 hydroxylase is a key enzyme in the biosynthesis of phytosphingosine, a major constituent of sphingolipids in plants and yeasts. The rice genome contains five homologue genes for dihydrosphingosine C4 hydroxylase, DSH1-DSH5, whose gene products show high degrees of homology to the yeast counterpart, SUR2. Among them, expression of DSH1, DSH2 and DSH4 was detected, and DSH1 and DSH4 complement the yeast sur2 mutation. The DSH1 gene was specifically and abundantly expressed in vascular bundles and apical meristems. In particular, very strong expression was detected in the stigmas of flowers. Repression of DSH1 expression by the antisense gene or RNA interference (RNAi) resulted in a severe reduction of fertility. In the transformants in which DSH1 expression was suppressed, significantly increased expression of DSH2 was found in leaves but not in pistils, suggesting that there was tissue-specific correlation between DSH1 and DSH2 expression. Our results indicate that the product of DSH1 may be involved in plant viability or reproductive processes, and that the phenotype of sterility is apparently caused by loss of function of DSH1 in the stigma. It is also suggested that there is a complex mechanism controlling the tissue-specific expression of the DSH1 gene.  相似文献   

7.
8.
9.
Boron (B) is an essential micronutrient for vascular plants.However, it remains unclear how B deficiency leads to variousmetabolic disorders and cell death. To understand this mechanism,we analyzed the physiological changes in suspension-culturedtobacco (Nicotiana tabacum) BY-2 cells upon B deprivation. When3-day-old cells were transferred to B-free medium, cell deathwas detectable as early as 12 h after treatment. The B-deprivedcells accumulated more reactive oxygen species and lipid peroxidesthan control cells, and showed a slight but significant decreasein the cellular ascorbate pool. Supplementing the media withlipophilic antioxidants effectively suppressed the death ofB-deprived cells, suggesting that the oxidative damage is theimmediate and major cause of cell death under B deficiency.Dead cells in B-free culture exhibited a characteristic morphologywith a shrunken cytoplasm, which is often seen in cells undergoingprogrammed cell death (PCD). However, they did not display otherhallmarks of PCD such as internucleosomal DNA fragmentation,decreased ascorbate peroxidase expression and protection fromdeath by cycloheximide. These results suggest that the deathof tobacco cells induced by B deprivation is not likely to bea typical PCD.  相似文献   

10.
11.
Ribulose 1,5-bisphosphate carboxylase/oxygenase (RuBisCO) is composed of small subunits (SSs) encoded by rbcS on the nuclear genome and large subunits (LSs) encoded by rbcL on the chloroplast genome, and it is localized in the chloroplast stroma. Constitutive knockdown of the rbcS gene reportedly causes a reduction in LS quantity and the level of translation in tobacco and the unicellular green alga Chlamydomonas. Constitutively knockdown of the rbcS gene also causes a reduction in photosynthesis, which influences the expression of photosynthetic genes, including the rbcL gene. Here, to investigate the influence of the knockdown of the rbcS gene on the expression of the rbcL gene under normal photosynthetic conditions, we generated transgenic tobacco plants in which the amount of endogenous rbcS mRNA can be reduced by inducible expression of antisense rbcS mRNA with dexamethasone (DEX) treatment at later stages of growth. In already expanded leaves, after DEX treatment, the level of photosynthesis, RuBisCO quantity and the chloroplast ultrastructure were normal, but the amount of rbcS mRNA was reduced. An in vivo pulse labeling experiment and polysome analysis showed that LSs were translated at the same rate as in wild-type leaves. On the other hand, in newly emerging leaves, the rbcS mRNA quantity, the level of photosynthesis and the quantity of RuBisCO were reduced, and chloroplasts failed to develop. In these leaves, the level of LS translation was inhibited, as previously described. These results suggest that LS translation is regulated in an SS-independent manner in expanded leaves under normal photosynthetic conditions.  相似文献   

12.
Disintegration of the vacuolar membrane (VM) has been proposed to be a crucial event in various types of programmed cell death (PCD) in plants. However, its regulatory mechanisms are mostly unknown. To obtain new insights on the regulation of VM disintegration during hypersensitive cell death, we investigated the structural dynamics and permeability of the VM, as well as cytoskeletal reorganization during PCD in tobacco BY-2 cells induced by a proteinaceous elicitor, cryptogein. From sequential observations, we have identified the following remarkable events during PCD. Stage 1: bulb-like VM structures appear within the vacuolar lumen and the cortical microtubules are disrupted, while the cortical actin microfilaments are bundled. Simultaneously, transvacuolar strands including endoplasmic microtubules and actin microfilaments are gradually disrupted and the nucleus moves from the center to the periphery of the cell. Stage 2: cortical actin microfilament bundles and complex bulb-like VM structures disappear. The structure of the large central vacuole becomes simpler, and small spherical vacuoles appear. Stage 3: the VM is disintegrated and a fluorescent dye, BCECF, leaks out of the vacuoles just prior to PCD. Application of an actin polymerization inhibitor facilitates both the disappearance of bulb-like vacuolar membrane structures and induction of cell death. These results suggest that the elicitor-induced reorganization of actin microfilaments is involved in the regulation of hypersensitive cell death via modification of the vacuolar structure to induce VM disintegration.  相似文献   

13.
Pollen represents an important nitrogen sink in flowers to ensurepollen viability. Since pollen cells are symplasmically isolatedduring maturation and germination, membrane transporters arerequired for nitrogen import across the pollen plasma membrane.This study describes the characterization of the ammonium transporterAtAMT1;4, a so far uncharacterized member of the ArabidopsisAMT1 family, which is suggested to be involved in transportingammonium into pollen. The AtAMT1;4 gene encodes a functionalammonium transporter when heterologously expressed in yeastor when overexpressed in Arabidopsis roots. Concentration-dependentanalysis of 15N-labeled ammonium influx into roots of AtAMT1;4-transformedplants allowed characterization of AtAMT1;4 as a high-affinitytransporter with a Km of 17 µM. RNA and protein gel blotanalysis showed expression of AtAMT1;4 in flowers, and promoter–genefusions to the green fluorescent protein (GFP) further definedits exclusive expression in pollen grains and pollen tubes.The AtAMT1;4 protein appeared to be localized to the plasmamembrane as indicated by protein gel blot analysis of plasmamembrane-enriched membrane fractions and by visualization ofGFP-tagged AtAMT1;4 protein in pollen grains and pollen tubes.However, no phenotype related to pollen function could be observedin a transposon-tagged line, in which AtAMT1;4 expression isdisrupted. These results suggest that AtAMT1;4 mediates ammoniumuptake across the plasma membrane of pollen to contribute tonitrogen nutrition of pollen via ammonium uptake or retrieval.  相似文献   

14.
15.
Significant male and female flowering (cone bud production) by girdled branches of 6-year-old Douglas fir (Pseudotsuga menziesii (Mirb. Franco) seedlings was promoted by applications (mid-April to June) of 1.6 or 3.2 mg per branch (in total) of certain non-polar gibberellins (GA's). Girdling alone was ineffective. When tested alone, a mixture of GA4/7 was most effective. GA9 less so, while GA5 and the more polar GA3 were essentially ineffective. For female cone buds GA4/7+ GA9 were synergistically effective, but for male cone buds GA4/7 alone was best. The auxin naphthaleneacetic acid (NAA) was not tested alone, but at low dosage (0.175 mg/branch in total) NAA enhanced the flowering efficacy of GA's for both sexes; at a high dosage (0.875 mg/branch in total) male cone bud production was further enhanced, but only at the expense of females. For female flowering the best treatment (90% frequency of flowering 6.8 cone buds/branch), was GA4/7+ GA9+ low NAA; for male flowering, it was GA4/7+ high NAA (30% frequency and 4.2 cone buds/branch. Frequency of flowering for controls was 18% and 0%, average number of cone buds/branch was 0.9 and 0, for females and males, respectively. The successful treatments did not affect promordia initiation, rather they caused the differentiation of previously initiated, but undetermined, lateral primordia into cone and latent buds at the expense of vegetative bud differentiation. The lack of success reported by earlier workers in promoting flowering in Pinaceae species by GA's appears to be the unfortunate result of selecting GA3 for initial testing. The practical implications of this early and enhanced flowering by non-polar GA's seedlings of a commercially important conifer are discussed in relation to accelerating the processes of tree improvement.  相似文献   

16.
The gibberellins GA1, GA3, GA4, GA7, GA9 and GA20 were quantified in vegetative and pollen cone buds of juvenile and mature trees of Pinus radiata by combined gas chromatography-mass spectrometry and selected ion monitoring (GC-MS-SIM) using deuterated GAs as internal standards. Higher levels of GA7 and GA9 and lower levels of GA4 were detected in juvenile vegetative buds compared to mature buds, and there were no differences in relation to age for GA1, GA3 and GA20. Conversely, when differences between vegetative and pollen cone buds from a mature tree were studied, the highest levels of GA1 and GA4 were found in pollen cone buds, similar levels of GA3, GA7 and GA9 were observed in both, and ten fold lower levels of GA20 were found in pollen cone buds as compared with vegetative buds. These results indicate a difference in GA metabolism in relation to both the tree age as well as the physiological status of buds: vegetative or reproductive in this conifer.  相似文献   

17.
In Arabidopsis, three genes (AHK2, AHK3 and AHK4/CRE1) encode histidine kinases (His-kinases), which serve as cytokinin receptors. To understand how the external cytokinin signal activates the His-kinase across the cell membrane, we exploited the power of microbial genetics to isolate several AHK4 mutants that function independently of cytokinin in both prokaryotic and eukaryotic assay systems. In each mutant, a single amino acid substitution within the second membrane-spanning segment, or within the region around the phosphorylation His site, renders the His-kinase constitutively active. These mutant receptors appear to have a 'locked-on' conformation, even in the absence of stimulus. We discuss the implications of these data for the structure and function of the cytokinin receptor His-kinases in plants.  相似文献   

18.
The mitogen-activated protein kinase (MAPK) phosphatases (MKPs) are negative regulators of MAPKs. In dicotyledons such as Arabidopsis and tobacco, MKPs have been shown to play pivotal roles in abiotic stress responses, hormone responses and microtubule organization. However, little is known about the role of MKPs in monocotyledons such as rice. Database searches identified five putative MKPs in rice. We investigated their expression in response to wounding, and found that the expression of OsMKP1 is rapidly induced by wounding. In this study, we functionally characterized the involvement of OsMKP1 in wound responses. The deduced amino acid sequence of OsMKP1 shows strong similarity to Arabidopsis AtMKP1 and tobacco NtMKP1. Moreover, OsMKP1 bound calmodulin in a manner similar to NtMKP1. To determine the biological function of OsMKP1, we obtained osmkp1, a loss-of-function mutant, in which retrotransposon Tos17 was inserted in the second exon of OsMKP1. Unlike the Arabidopsis atmkp1 loss-of-function mutant, which shows no abnormal phenotype without stimuli, osmkp1 showed a semi-dwarf phenotype. Exogenous supply of neither gibberellin nor brassinosteroid complemented the semi-dwarf phenotype of osmkp1. Activities of two stress-responsive MAPKs, OsMPK3 and OsMPK6, in osmkp1 were higher than those in the wild type both before and after wounding. Microarray analysis identified 13 up-regulated and eight down-regulated genes in osmkp1. Among the up-regulated genes, the expression of five genes showed clear responses to wounding, indicating that wound responses are constitutively activated in osmkp1. These results suggest that OsMKP1 is involved in the negative regulation of rice wound responses.  相似文献   

19.
Aquaporin is a water channel that increases water permeabilitythrough membranous structures. In plants, vacuoles are essentialorganelles that undergo dynamic volume changes during cell growth.To understand the contribution of aquaporins to plant cell growth,we developed a transgenic tobacco BY-2 cell line overexpressingthe tonoplast intrinsic protein (TIP), TIP. Vacuolar membranesof isolated vacuoles from TIP-overexpressing cells showed higherwater permeation activities than those from wild-type cells.We then examined the role of TIP in vacuolar regeneration ofevacuolated tobacco BY-2 protoplasts (miniprotoplasts). Vacuolarregeneration from thin to thick tube-network vacuoles and subsequentdevelopment of large vacuoles was accelerated in miniprotoplastsof this cell line. A parallel increase in the rate of cell expansionindicated a tight relationship between vacuolar developmentand cellular volume increases. Interestingly, overexpressionof tobacco TIP also enhanced cell division. Thus, increasedvacuolar aquaporin activity may accelerate both cell expansionand cell division by increasing water permeability through thevacuolar membrane.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号