首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Previous results suggested that the U(L)31 gene of herpes simplex virus 1 (HSV-1) is required for envelopment of nucleocapsids at the inner nuclear membrane and optimal viral DNA synthesis and DNA packaging. In the current study, viral gene expression and NF-κB and c-Jun N-terminal kinase (JNK) activation of a herpes simplex virus mutant lacking the U(L)31 gene, designated ΔU(L)31, and its genetic repair construct, designated ΔU(L)31-R, were studied in various cell lines. In Hep2 and Vero cells infected with ΔU(L)31, expression of the immediate-early protein ICP4, early protein ICP8, and late protein glycoprotein C (gC) were delayed significantly. In Hep2 cells, expression of these proteins failed to reach levels seen in cells infected with ΔU(L)31-R or wild-type HSV-1(F) even after 18 h. The defect in protein accumulation correlated with poor or no activation of NF-κB and JNK upon infection with ΔU(L)31 compared to wild-type virus infection. The protein expression defects of the U(L)31 deletion mutant were not explainable by a failure to enter nonpermissive cells and were not complemented in an ICP27-expressing cell line. These data suggest that pU(L)31 facilitates initiation of infection and/or accelerates the onset of viral gene expression in a manner that correlates with NF-κB activation and is independent of the transactivator ICP27. The effects on very early events in expression are surprising in light of the fact that U(L)31 is designated a late gene and pU(L)31 is not a virion component. We show herein that while most pUL31 is expressed late in infection, low levels of pU(L)31 are detectable as early as 2 h postinfection, consistent with an early role in HSV-1 infection.  相似文献   

2.
Yang K  Wills EG  Baines JD 《Journal of virology》2011,85(22):11972-11980
Herpesvirus genomic DNA is cleaved from concatemers that accumulate in infected cell nuclei. Genomic DNA is inserted into preassembled capsids through a unique portal vertex. Extensive analyses of viral mutants have indicated that intact capsids, the portal vertex, and all components of a tripartite terminase enzyme are required to both cleave and package viral DNA, suggesting that DNA cleavage and packaging are inextricably linked. Because the processes have not been functionally separable, it has been difficult to parse the roles of individual proteins in the DNA cleavage/packaging reaction. In the present study, a virus bearing the deletion of codons 400 to 420 of U(L)15, encoding a terminase component, was analyzed. This virus, designated vJB27, failed to replicate on noncomplementing cells but cleaved concatemeric DNA to ca. 35 to 98% of wild-type levels. No DNA cleavage was detected in cells infected with a U(L)15-null virus or a virus lacking U(L)15 codons 383 to 385, comprising a motif proposed to couple ATP hydrolysis to DNA translocation. The amount of vJB27 DNA protected from DNase I digestion was reduced compared to the wild-type virus by 6.5- to 200-fold, depending on the DNA fragment analyzed, thus indicating a profound defect in DNA packaging. Capsids containing viral DNA were not detected in vJB27-infected cells, as determined by electron microscopy. These data suggest that pU(L)15 plays an essential role in DNA translocation into the capsid and indicate that this function is separable from its role in DNA cleavage.  相似文献   

3.
A temperature-sensitive mutant of simian virus 40 (SV40), ts(*)101, has been characterized during productive infection in monkey kidney cells. The mutant virion can adsorb to and penetrate the cell normally at the restrictive temperature, but cannot induce the synthesis of cellular deoxyribonucleic acid (DNA) nor initiate the synthesis of SV40-specific tumor, virion, or U antigens or viral DNA. First-cycle infection with purified ts(*)101 DNA is normal at the restrictive temperature, but the resulting progeny virions are still temperature-sensitive. The mutant neither complements nor inhibits other temperature-sensitive SV40 mutants or wild-type virions. The affected protein in the ts(*)101 mutant may be a regulatory structural protein, possibly a core protein, that is interacting with the viral DNA.  相似文献   

4.
An immunodominant antigen, p35, is expressed on the envelope of intracellular mature virions (IMV) of vaccinia virus. p35 is encoded by the viral late gene H3L, but its role in the virus life cycle is not known. This report demonstrates that soluble H3L protein binds to heparan sulfate on the cell surface and competes with the binding of vaccinia virus, indicating a role for H3L protein in IMV adsorption to mammalian cells. A mutant virus defective in expression of H3L (H3L(-)) was constructed; the mutant virus has a small plaque phenotype and 10-fold lower IMV and extracellular enveloped virion titers than the wild-type virus. Virion morphogenesis is severely blocked and intermediate viral structures such as viral factories and crescents accumulate in cells infected with the H3L(-) mutant virus. IMV from the H3L(-) mutant virus are somewhat altered and less infectious than wild-type virions. However, cells infected by the mutant virus form multinucleated syncytia after low pH treatment, suggesting that H3L protein is not required for cell fusion. Mice inoculated intranasally with wild-type virus show high mortality and severe weight loss, whereas mice infected with H3L(-) mutant virus survive and recover faster, indicating that inactivation of the H3L gene attenuates virus virulence in vivo. In summary, these data indicate that H3L protein mediates vaccinia virus adsorption to cell surface heparan sulfate and is important for vaccinia virus infection in vitro and in vivo. In addition, H3L protein plays a role in virion assembly.  相似文献   

5.
Poon AP  Liang Y  Roizman B 《Journal of virology》2003,77(23):12671-12678
An earlier report showed that the expression of viral genes by a herpes simplex virus 1 mutant [HSV-1(vCPc0)] in which the wild-type, spliced gene encoding infected-cell protein no. 0 (ICP0) was replaced by a cDNA copy is dependent on both the cell type and multiplicity of infection. At low multiplicities of infection, viral gene expression in rabbit skin cells was delayed by many hours, although ultimately virus yield was comparable to that of the wild-type virus. This defect was rescued by replacement of the cDNA copy with the wild-type gene. To test the hypothesis that the delay reflected a dysfunction of ICP0 in altering the structure of host protein-viral DNA complexes, we examined the state of histone deacetylases (HDACs) (HDAC1, HDAC2, and HDAC3). We report the following. (i) HDAC1 and HDAC2, but not HDAC3, were modified in infected cells. The modification was mediated by the viral protein kinase U(S)3 and occurred between 3 and 6 h after infection with wild-type virus but was delayed in rabbit skin cells infected with HSV-1(vCPc0) mutant, concordant with a delay in the expression of viral genes. (ii) Pretreatment of rabbit skin cells with inhibitors of HDAC activity (e.g., sodium butyrate, Helminthosporium carbonum toxin, or trichostatin A) accelerated the expression of HSV-1(vCPc0) but not that of wild-type virus. We conclude the following. (i) In the interval in which HSV-1(vCPc0) DNA is silent, its DNA is in chromatin-like structures amenable to modification by inhibitors of histone deacetylases. (ii) Expression of wild-type virus genes in these cells precluded the formation of DNA-protein structures that would be affected by either the HDACs or their inhibitors. (iii) Since the defect in HSV-1(vCPc0) maps to ICP0, the results suggest that this protein initiates the process of divestiture of viral DNA from tight chromatin structures but could be replaced by other viral proteins in cells infected with a large number of virions.  相似文献   

6.
7.
Liu B  Yu X  Luo K  Yu Y  Yu XF 《Journal of virology》2004,78(4):2072-2081
The Vif protein of human immunodeficiency virus type 1 (HIV-1) is essential for viral evasion of the host antiviral protein APOBEC3G, also known as CEM15. Vif mutant but not wild-type HIV-1 viruses produced in the presence of APOBEC3G have been shown to undergo hypermutations in newly synthesized viral DNA upon infection of target cells, presumably resulting from C-to-U modification during minus-strand viral DNA synthesis. We now report that HIV-1 Vif could induce rapid degradation of human APOBEC3G that was blocked by the proteasome inhibitor MG132. The efficiency of Vif-induced downregulation of APOBEC3G expression depended on the level of Vif expression. A single amino acid substitution in the conserved SLQXLA motif reduced Vif function. Vif proteins from distantly related primate lentiviruses such as SIVagm were unable to suppress the antiviral activity of human APOBEC3G or the packaging of APOBEC3G into HIV-1 Vif mutant virions, due to a lack of interaction with human APOBEC3G. In the presence of the proteasome inhibitor MG132, virion-associated Vif increased dramatically. However, increased virion packaging of Vif did not prevent virion packaging of APOBEC3G when proteasome function was impaired, and the infectivity of these virions was significantly reduced. These results suggest that Vif function is required during virus assembly to remove APOBEC3G from packaging into released virions. Once packaged, virion-associated Vif could not efficiently block the antiviral activity of APOBEC3G.  相似文献   

8.
9.
Disruption of the vif gene of human immunodeficiency virus (HIV) type 1 affects virus infectivity to various degrees, depending on the T-cell line used. We have concentrated our studies on true phenotypic Vif- mutant particles produced from CEMx174 or H9 cells. In a single round of infection, Vif- virus is approximately 25 (from CEMx174 cells) to 100 (from H9 cells) times less infectious than wild-type virus produced from these cells or than the Vif- mutant produced from HeLa cells. Vif- virions recovered from restrictive cells, but not from permissive cells, are abnormal both in terms of morphology and viral protein content. Notably, they contain much reduced quantities of envelope proteins and altered quantities of Gag and Pol proteins. Although wild-type and Vif- virions from restrictive cells contain similar quantities of viral RNA, no viral DNA synthesis was detectable after acute infection of target cells with phenotypically Vif- virions. To examine the possible role of Vif in viral entry, attempts were made to rescue the Vif- defect in H9 cells by pseudotyping Vif+ and Vif- HIV particles with amphotropic murine leukemia virus envelope. Vif- particles produced in the presence of HIV envelope could not be propagated when pseudotyped. In contrast, when only the murine leukemia virus envelope was present, significant propagation of Vif- HIV particles could be detected. These results demonstrate that Vif is required for proper assembly of the viral particle and for efficient HIV Env-mediated infection of target cells.  相似文献   

10.
After their release from host cells, most retroviral particles undergo a maturation process, which includes viral protein cleavage, core condensation, and increased stability of the viral RNA dimer. Inactivating the viral protease prevents protein cleavage; the resulting virions lack condensed cores and contain fragile RNA dimers. Therefore, protein cleavage is linked to virion morphological change and increased stability of the RNA dimer. However, it is unclear whether protein cleavage is sufficient for mediating virus RNA maturation. We have observed a novel phenotype in a murine leukemia virus capsid mutant, which has normal virion production, viral protein cleavage, and RNA packaging. However, this mutant also has immature virion morphology and contains a fragile RNA dimer, which is reminiscent of protease-deficient mutants. To our knowledge, this mutant provides the first evidence that Gag cleavage alone is not sufficient to promote RNA dimer maturation. To extend our study further, we examined a well-defined human immunodeficiency virus type 1 (HIV-1) Gag mutant that lacks a functional PTAP motif and produces immature virions without major defects in viral protein cleavage. We found that the viral RNA dimer in the PTAP mutant is more fragile and unstable compared with those from wild-type HIV-1. Based on the results of experiments using two different Gag mutants from two distinct retroviruses, we conclude that Gag cleavage is not sufficient for promoting RNA dimer maturation, and we propose that there is a link between the maturation of virion morphology and the viral RNA dimer.  相似文献   

11.
Feng X  Schröer J  Yu D  Shenk T 《Journal of virology》2006,80(17):8371-8378
We have characterized the function of the human cytomegalovirus US24 gene, a US22 gene family member. Two US24-deficient mutants (BADinUS24 and BADsubUS24) exhibited a 20- to 30-fold growth defect, compared to their wild-type parent (BADwt), after infection at a relatively low (0.01 PFU/cell) or high (1 PFU/cell) input multiplicity. Representative virus-encoded proteins and viral DNA accumulated with normal kinetics to wild-type levels after infection with mutant virus when cells received equal numbers of mutant and wild-type infectious units. Further, the proteins were properly localized and no ultrastructural differences were found by electron microscopy in mutant-virus-infected cells compared to wild-type-virus-infected cells. However, virions produced by US24-deficient mutants had a 10-fold-higher genome-to-PFU ratio than wild-type virus. When infections were performed using equal numbers of input virus particles, the expression of immediate-early, early, and late viral proteins was substantially delayed and decreased in the absence of US24 protein. This delay is not due to inefficient virus entry, since two tegument proteins and viral DNA moved to the nucleus equally well in mutant- and wild-type-virus-infected cells. In summary, US24 is a virion protein and virions produced by US24-deficient viruses exhibit a block to the human cytomegalovirus replication cycle after viral DNA reaches the nucleus and before immediate-early mRNAs are transcribed.  相似文献   

12.
The U(L)15 gene of herpes simplex virus type 1 is composed of two exons. A mutation previously shown to preclude viral DNA cleavage and packaging at the nonpermissive temperature was identified as a change from a highly conserved serine to proline at codon 653. Separate viral mutants that contained stop codons inserted into exon I of U(L)15 (designated S648) or an insertion of the Escherichia coli lacZ gene into a truncated U(L)15 exon II [designated HSV-1(delta U(L)15ExII)] were constructed. Recombinant viruses derived from S648 and HSV-1(delta U(L)15ExII) and containing restored U(L)15 genes were constructed and designated S648R and HSV-1(delta U(L)15ExIIR), respectively. Unlike HSV-1(delta U(L)15ExIIR) and S648R, the viruses containing mutant U(L)15 genes failed to cleave and package viral DNA when propagated on noncomplementing cells. As revealed by electron microscopy, large numbers of enveloped capsids lacking viral DNA accumulated within the cytoplasm of cells infected with either S648 or HSV-1(delta U(L)15ExII) but not in cells infected with HSV-1(delta U(L)15ExIIR) or S648R. Thus, one function of the U(L)15 gene is to effectively prevent immature particles lacking DNA from exiting the nucleus by envelopment at the inner lamella of the nuclear membrane. Cells infected with HSV-1(delta U(L)15ExII) did not express the 75,000- or 35,000-apparent-Mr proteins previously shown to be products of the U(L)15 open reading frame, whereas the 35,000-apparent-Mr protein was readily detectable in cells infected with S648. We conclude that at least the 75,000-Mr protein is required for viral DNA cleavage and packaging and hypothesize that the 35,000-Mr protein is derived from translation of a novel mRNA located partially or completely within the second exon of U(L)15.  相似文献   

13.
The adenovirus L1 52/55-kDa protein is required for viral DNA packaging and interacts with the viral IVa2 protein, which binds to the viral packaging sequence. Previous reports suggest that the IVa2 protein plays a role in viral DNA packaging and that this function of the IVa2 protein is serotype specific. To further examine the function of the IVa2 protein in viral DNA packaging, a mutant virus that does not express the IVa2 protein was constructed by introducing two stop codons at the beginning of the IVa2 open reading frame in a full-length bacterial clone of adenovirus type 5. The mutant virus, pm8002, was defective for growth in 293 cells, although it replicated its DNA and produced early and late viral proteins. Electron microscopic and gradient analyses revealed that the mutant virus did not assemble any viral particles in 293 cells. In 293-IVa2 cells, which express the IVa2 protein, infectious viruses were produced, although the titer of the mutant virus was lower than that of the wild-type virus, indicating that these cells may not fully complement the mutation. The mutant viral particles produced in 293-IVa2 cells were heterogeneous in size and shape, less stable, and did not traffic efficiently to the nucleus. Marker rescue experiments with a wild-type IVa2 DNA fragment confirmed that the only mutations present in pm8002 were in the IVa2 gene. The results indicate that the IVa2 protein is required for adenovirus assembly and suggest that virus particles may be assembled around the DNA rather than DNA being packaged into preformed capsids.  相似文献   

14.
The human cytomegalovirus (HCMV) maturational proteinase is synthesized as an enzymatically active 74-kDa precursor that cleaves itself at four sites. Two of these, called the maturational (M) and release (R) sites, are conserved in the homologs of all herpesviruses. The other two, called the internal (I) and cryptic (C) sites, have recognized consensus sequences only among cytomegalovirus (CMV) homologs and are located in the 28-kDa proteolytic portion of the precursor, called assemblin. I-site cleavage cuts assemblin in half without detected effect on its enzymatic behavior in vitro. To investigate the requirement for this cleavage during virus infection, we used the CMV-bacterial artificial chromosome system (E. M. Borst, G. Hahn, U. H. Koszinowski, and M. Messerle, J. Virol. 73:8320-8329, 1999) to construct a virus encoding a mutant I site (Ala143 to Val) intended to be blocked for cleavage. Characterizations of the resulting mutant (i) confirmed the presence of the mutation in the viral genome and the inability of the mutant virus to effect I-site cleavage in infected cells; (ii) determined that the mutation has no gross effect on the rate of virus production or on the amounts of extracellular virions, noninfectious enveloped particles (NIEPs), and dense bodies; (iii) established that assemblin and its cleavage products are present in NIEPs but are absent from CMV virions, an apparent difference from what is found for virions of herpes simplex virus; and (iv) showed that the 23-kDa protein product of C-site cleavage is more abundant in mutant virus-than in wild-type virus-infected cells and NIEPs. We conclude that the production of infectious CMV requires neither I-site cleavage of assemblin nor the presence of assemblin in the mature virion.  相似文献   

15.
Properties of avian retrovirus particles defective in viral protease.   总被引:35,自引:30,他引:5       下载免费PDF全文
L Stewart  G Schatz    V M Vogt 《Journal of virology》1990,64(10):5076-5092
  相似文献   

16.
Aichi virus, a member of the family Picornaviridae, encodes a leader (L) protein of 170 amino acids (aa). The Aichi virus L protein exhibits no significant sequence homology to those of other picornaviruses. In this study, we investigated the function of the Aichi virus L protein in virus growth. In vitro translation and cleavage assays indicated that the L protein has no autocatalytic activity and is not involved in polyprotein cleavage. The L-VP0 junction was cleaved by 3C proteinase. Immunoblot analysis showed that the L protein is stably present in infected cells. Characterization of various L mutants derived from an infectious cDNA clone revealed that deletion of 93 aa of the center part (aa 43 to 135), 50 aa of the N-terminal part (aa 4 to 53), or 90 aa of the C-terminal part (aa 74 to 163) abolished viral RNA replication. A mutant (Delta114-163) in which 50 aa of the C-terminal part (aa 114 to 163) were deleted exhibited efficient RNA replication and translation abilities, but the virus yield was 4 log orders lower than that of the wild type. Sedimentation analysis of viral particles generated in mutant Delta114-163 RNA-transfected cells showed that the mutant has a severe defect in the formation of mature virions, but not in that of empty capsids. Thus, the data obtained in this study indicate that the Aichi virus L protein is involved in both viral RNA replication and encapsidation.  相似文献   

17.
Herpes simplex virus type 1 (HSV-1) virions, like those of all herpesviruses, contain a proteinaceous layer termed the tegument that lies between the nucleocapsid and viral envelope. The HSV-1 tegument is composed of at least 20 different viral proteins of various stoichiometries. VP22, the product of the U(L)49 gene, is one of the most abundant tegument proteins and is conserved among the alphaherpesviruses. Although a number of interesting biological properties have been attributed to VP22, its role in HSV-1 infection is not well understood. In the present study we have generated both a U(L)49-null virus and its genetic repair and characterized their growth in both cultured cells and the mouse cornea. While single-step growth analyses indicated that VP22 is dispensable for virus replication at high multiplicities of infection (MOIs), analyses of plaque morphology and intra- and extracellular multistep growth identified a role for VP22 in viral spread during HSV-1 infection at low MOIs. Specifically, VP22 was not required for either virion infectivity or cell-cell spread but was required for accumulation of extracellular virus to wild-type levels. We found that the absence of VP22 also affected virion composition. Intracellular virions generated by the U(L)49-null virus contained reduced amounts of ICP0 and glycoproteins E and D compared to those generated by the wild-type and U(L)49-repaired viruses. In addition, viral spread in the mouse cornea was significantly reduced upon infection with the U(L)49-null virus compared to infection with the wild-type and U(L)49-repaired viruses, identifying a role for VP22 in viral spread in vivo as well as in vitro.  相似文献   

18.
19.
Mutations in the alkaline nuclease gene of herpes simplex type 1 (HSV-1) (nuc mutations) induce almost wild-type levels of viral DNA; however, mutant viral yields are 0.1 to 1% of wild-type yields (L. Shao, L. Rapp, and S. Weller, Virology 195:146-162, 1993; R. Martinez, L. Shao, J.C. Bronstein, P.C. Weber, and S. Weller, Virology 215:152-164, 1996). nuc mutants are defective in one or more stages of genome maturation and appear to package DNA into aberrant or defective capsids which fail to egress from the nucleus of infected cells. In this study, we used pulsed-field gel electrophoresis to test the hypothesis that the defects in nuc mutants are due to the failure of the newly replicated viral DNA to be processed properly during DNA replication and/or recombination. Replicative intermediates of HSV-1 DNA from both wild-type- and mutant-infected cells remain in the wells of pulsed-field gels, while free linear monomers are readily resolved. Digestion of this well DNA with restriction enzymes that cleave once in the viral genome releases discrete monomer DNA from wild-type virus-infected cells but not from nuc mutant-infected cells. We conclude that both wild-type and mutant DNAs exist in a complex, nonlinear form (possibly branched) during replication. The fact that discrete monomer-length DNA cannot be released from nuc DNA by a single-cutting enzyme suggests that this DNA is more branched than DNA which accumulates in cells infected with wild-type virus. The well DNA from cells infected with wild-type and nuc mutants contains XbaI fragments which result from genomic inversions, indicating that alkaline nuclease is not required for mediating recombination events within HSV DNA. Furthermore, nuc mutants are able to carry out DNA replication-mediated homologous recombination events between inverted repeats on plasmids as evaluated by using a quantitative transient recombination assay. Well DNA from both wild-type- and mutant-infected cells contains free U(L) termini but not free U(S) termini. Various models to explain the structure of replicating DNA are considered.  相似文献   

20.
K Wu  D Orozco  P Hearing 《Journal of virology》2012,86(19):10474-10483
A variety of cellular and viral processes are coordinately regulated during adenovirus (Ad) infection to achieve optimal virus production. The Ad late gene product L4-22K has been associated with disparate activities during infection, including the regulation of late gene expression, viral DNA packaging, and infectious virus production. We generated and characterized two L4-22K mutant viruses to further explore L4-22K functions during viral infection. Our results show that L4-22K is indeed important for temporal control of viral gene expression not only because it activates late gene expression but also because it suppresses early gene expression. We also show that the L4-22K protein binds to viral packaging sequences in vivo and is essential to recruit two other packaging proteins, IVa2 and L1-52/55K, to this region. The elimination of L4-22K gave rise to the production of only empty virus capsids and not mature virions, which confirms that the L4-22K protein is required for Ad genome packaging. Finally, L4-22K contributes to adenovirus-induced cell death by regulating the expression of the adenovirus death protein. Thus, the adenovirus L4-22K protein is multifunctional and an integral component of crucial aspects of infection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号