首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The property of the dyes, acridine orange and methylene blue, to exhibit metachromatic changes upon binding to negatively charged groups that are within a defined spatial separation was employed to study the lateral and transverse topography of sulfatide and gangliosides GM1 and GD1a mixed with dipalmitoylphosphatidylcholine (DPPC) in unilamellar vesicles. The spectral changes of the dyes in the presence of liposomes containing anionic glycosphingolipids (GSLs) (hypochromism and frequency shift) are typical of polyanionic lattices while minor changes are found for neutral lipids. The metachromatic changes are abolished by the presence of Ca2+ in the external medium. The proportion of anionic GSLs accessible to the dyes on the external surface of the liposomes is greater as the GSLs are more complex (sulfatide less than GM1 less than GD1a) and as its proportion in the mixture decreases. The number of molecules of anionic GSLs that are laterally distributed on the external surface in a position favorable for the formation of dye dimers (at intermolecular distances not exceeding 1 nm) is greater for sulfatide than for ganglioside. This is correlated to the greater intermolecular distances and delocalization in ganglioside-, compared to sulfatide-containing interfaces. The experimental values indicate that the mixture with DPPC of any of the anionic GSLs studied behaves as if it was more enriched in the GSLs compared to the proportions of the whole mixture.  相似文献   

2.
The interaction between dipalmitoylphosphatidylcholine large unilamellar vesicles and porcine pancreatic phospholipase A2 has been studied under a variety of conditions. It was found that the presence of large unilamellar vesicles inhibits the hydrolysis of small unilamellar vesicles at room temperature, and reaction calorimetric experiments showed that protein-lipid interactions in the absence of Ca2+ occur in the gel state with a stoichiometry of about 40 phospho-lipid molecules/protein-binding site. However, hydrolysis can be induced in the gel state under conditions of osmotic shock. On the other hand, hydrolysis is usually observed within the lipid transition temperature range, but then it occurs only after a latency phase during which the hydrolysis is very slow. The duration of this latency phase reaches a minimum near the phase transition temperature. However, if the enzyme-substrate mixture is heated from low temperatures (continuously or by a temperature jump) to a temperature within the phase transition region, hydrolysis occurs instantaneously. These results are in accordance with the conclusions of the preceding paper (Menashe, M., Romero, G., Biltonen, R. L., and Lichtenberg, D. (1986) J. Biol. Chem. 261, 5328-5333) that effective binding of the enzyme to lipid vesicles occurs relatively rapidly in the gel state and that activation of the enzyme-substrate complex requires the existence of structural irregularities in the lipid bilayer. Although hydrolysis products may have a pronounced effect on the time course of the reaction in the transition range, instantaneous hydrolysis can be induced in the phase transition region in the absence of reaction products by appropriate manipulation of the experimental conditions during which no reaction products are produced. Thus reaction products are not essential for activation of porcine pancreatic phospholipase A2. Furthermore, it is shown that the fraction of lipid hydrolyzed during the latency period is a function of the initial substrate concentration in a manner inconsistent with the proposition that the accumulation of a constant critical fraction of reaction products is the basis for activation. Comparison of the results of this study with those of the preceding paper strongly support the previously proposed reaction scheme.  相似文献   

3.
W Li  T H Haines 《Biochemistry》1986,25(23):7477-7483
A general procedure for the preparation of large unilamellar vesicles of selected sizes has been developed. The procedure consists of dissolving the lipid in organic solvent, washing with mild acid, removing the solvent, adding salt (0.15 M KCl) solution, and adjusting the pH (raising it to about pH 10 and lowering it immediately to pH 7.55). The procedure takes less than 30 min. The resulting unilamellar vesicles are of a single size with a rather low standard deviation. The sizes of these preparations range between 150 and 1000 nm in diameter. Sizes and polydispersities were measured to within 1-2% by photon correlation spectroscopy. Vesicle size varies with the phospholipid structure, the composition of the phospholipid mixture, the ionic strength of the medium, the alkyl chain composition, the cholesterol content of the phospholipid mixture, and the timing of the pH adjustment procedure. Uniform preparations of vesicles have been obtained from the dioleoyl esters of phosphatidic acid, phosphatidylglycerol, phosphatidylethanolamine, and phosphatidylserine, from diphytanyl ethers of glycolipid sulfate, phosphatidylglycerol, phosphatidylglycerol phosphate, and phosphatidylglycerol sulfate, from bovine liver phosphatidylinositol, from Escherichia coli phosphatidylethanolamine, from membrane lipid extracts from E. coli and Holabacterium cutirubrum, and from dodecanesulfonate-alkanol mixtures and free oleic acid. The preparation of unilamellar vesicles from oleic acid is novel, and the size range is 600-3000 nm; the preparations are relatively uniform. Vesicles of phospholipids in which sucrose and trehalose replace salt as the impermeant do not differ significantly from those prepared in pentaerythritol.  相似文献   

4.
The ability of lipid asymmetry to regulate Ca(2+)-stimulated fusion between large unilamellar vesicles has been investigated. It is shown that for 100-nm-diameter LUVs composed of dioleoylphosphatidylcholine, dioleoylphosphatidylethanolamine, phosphatidylinositol, and dioleoylphosphatidic acid (DOPC/DOPE/PI/DOPA; 25:60:5:10) rapid and essentially complete fusion is observed by fluorescent resonance energy transfer techniques when Ca2+ (8 mM) is added. Alternatively, for LUVs with the same lipid composition but when DOPA was sequestered to the inner monolayer by incubation in the presence of a pH gradient (interior basic), little or no fusion is observed on addition of Ca2+. It is shown that the extent of Ca(2+)-induced fusion correlates with the amount of exterior DOPA. Further, it is shown that LUVs containing only 2.5 mol % DOPA, but where all the DOPA is in the outer monolayer, can be induced to fuse to the same extent and with the same rate as LUVs containing 5 mol % DOPA. These results strongly support a regulatory role for lipid asymmetry in membrane fusion and indicate that the fusogenic tendencies of lipid bilayers are largely determined by the properties of the monolayers proximate to the fusion interface.  相似文献   

5.
Osmotic properties of large unilamellar vesicles prepared by extrusion.   总被引:8,自引:5,他引:3  
We have examined the morphology and osmotic properties of large unilamellar vesicles (LUVs) prepared by extrusion. Contrary to expectations, we observe by cryo-electron microscopy that such vesicles, under isoosmotic conditions, are non-spherical. This morphology appears to be a consequence of vesicle passage through the filter pores during preparation. As a result when such LUVs are placed in a hypoosmotic medium they are able to compensate, at least partially, for the resulting influx of water by "rounding up" and thereby increasing their volume with no change in surface area. The increase in vesicle trapped volume associated with these morphological changes was determined using the slowly membrane-permeable solute [3H]-glucose. This allowed calculation of the actual osmotic gradient experienced by the vesicle membrane for a given applied differential. When LUVs were exposed to osmotic differentials of sufficient magnitude lysis occurred with the extent of solute release being dependent on the size of the osmotic gradient. Surprisingly, lysis was not an all-or-nothing event, but instead a residual osmotic differential remained after lysis. This differential value was comparable in magnitude to the minimum osmotic differential required to trigger lysis. Further, by comparing the release of solutes of differing molecular weights (glucose and dextran) a lower limit of about 12 nm diameter can be set for the bilayer defect created during lysis. Finally, the maximum residual osmotic differentials were compared for LUVs varying in mean diameter from 90 to 340 nm. This comparison confirmed that these systems obey Laplace's Law relating vesicle diameter and lysis pressure. This analysis also yielded a value for the membrane tension at lysis of 40 dyn cm-1 at 23 degrees C, which is in reasonable agreement with previously published values for giant unilamellar vesicles.  相似文献   

6.
The morphological consequences of differences in the monolayer surface areas of large unilamellar vesicles (LUVs) have been examined employing cryoelectron microscopy techniques. Surface area was varied by inducing net transbilayer transport of dioleoylphosphatidylglycerol (DOPG) in dioleoylphosphatidylcholine (DOPC):DOPG (9:1, mol:mol) LUVs in response to transmembrane pH gradients. It is shown that when DOPG is transported from the inner to the outer monolayer, initially invaginated LUVs are transformed to long narrow tubular structures, or spherical structures with one or more protrusions. Tubular structures are also seen in response to outward DOPG transport in DOPC:DOPG:Chol (6:1:3, mol:mol:mol) LUV systems, and when lyso-PC is allowed to partition into the exterior monolayer of DOPC:DOPG (9:1, mol:mol) LUVs in the absence of DOPG transport. Conversely, when the inner monolayer area is expanded by the transport of DOPG from the outer monolayer to the inner monolayer of non-invaginated LUVs, a reversion to invaginated structures is observed. The morphological changes are well described by an elastic bending theory of the bilayer. Identification of the difference in relaxed monolayer areas and of the volume-to-area ratio of the LUVs as the shape-determining factors allows a quantitative classification of the observed morphologies. The morphology seen in LUVs supports the possibility that factors leading to differences in monolayer surface areas could play important roles in intracellular membrane transport processes.  相似文献   

7.
The uptake of dibucaine into large unilamellar vesicles in response to proton gradients (delta pH; inside acidic) or membrane potentials (delta psi; inside negative) has been investigated. Dibucaine uptake in response to delta pH proceeds rapidly in a manner consistent with permeation of the neutral (deprotonated) form of the drug, reaching a Henderson-Hasselbach equilibrium where [dibucaine]in/[dibucaine]out = [H+]in/[H+]out and where the absolute amount of drug accumulated is sensitive to the buffering capacity of the interior environment. Under appropriate conditions, high absolute interior concentrations of the drug can be achieved (approximately 120 mM) in combination with high trapping efficiencies (in excess of 90%). Dibucaine uptake in response to delta psi proceeds more than an order of magnitude more slowly and cannot be directly attributed to uptake in response to the delta pH induced by delta psi. This induced delta pH is too small (less than or equal to 1.5 pH units) to account for the transmembrane dibucaine concentration gradients achieved and does not come to electrochemical equilibrium with delta psi. Results supporting the possibility that the charged (protonated) form of dibucaine can be accumulated in response to delta psi were obtained by employing a permanently positively charged dibucaine analogue (N-methyldibucaine). Further, the results suggest that delta psi-dependent uptake may depend on formation of a precipitate of the drug in the vesicle interior. The uptake of dibucaine into vesicles in response to ion gradients is of direct utility in drug delivery and controlled release applications and is related to processes of drug sequestration by cells and organelles in vivo.  相似文献   

8.
Exposure of cell membranes to an electromagnetic field (EMF) in the millimeter wave band (30–300 GHz) can produce a variety of responses. Further, many of the vibrational modes in complex biomolecules fall in the 1–100 GHz range. In addition to fundamental scientific interest, this may have applications in the development of diagnostic and therapeutic medical applications. In the present work, lipid vesicles of different size were used to study the effects of exposure to radiation at 52–72 GHz, with incident power densities (IPD) of 0.0035–0.010 mW/cm2, on the chemical-physical properties of cell membranes. Large unilamellar vesicles (LUVs) were used to study the effect of the radiation on the physical stability of vesicles by dynamic light scattering. An inhibition of the aging processes (Ostwald ripening), which usually occur in these vesicles because of their thermodynamic instability, resulted. Giant unilamellar vesicles (GUVs) were used to study the effect of the radiation on membrane water permeability under osmotic stress by phase contrast microscopy. In this case, a decrease in the water membrane permeability of the irradiated samples was observed. We advance the hypothesis that both the above effects may be explained in terms of a change of the polarization states of water induced by the radiation, which causes a partial dehydration of the membrane and consequently a greater packing density (increased membrane rigidity).  相似文献   

9.
The plasma membrane-cytoskeleton interface is a dynamic structure participating in a variety of cellular events. Among the proteins involved in the direct linkage between the cytoskeleton and the plasma membrane is the ezrin/radixin/moesin (ERM) family. The FERM (4.1 ezrin/radixin/moesin) domain in their N-terminus contains a phosphatidylinositol 4,5 bisphosphate (PIP2) (membrane) binding site whereas their C-terminus binds actin. In this work, our aim was to quantify the interaction of ezrin with large unilamellar vesicles (LUVs) containing PIP2. For this purpose, we produced human recombinant ezrin bearing a cysteine residue at its C-terminus for subsequent labeling with Alexa488 maleimide. The functionality of labeled ezrin was checked by comparison with that of wild-type ezrin. The affinity constant between ezrin and LUVs was determined by cosedimentation assays and fluorescence correlation spectroscopy. The affinity was found to be ∼5 μM for PIP2-LUVs and 20-to 70-fold lower for phosphatidylserine-LUVs. These results demonstrate, as well, that the interaction between ezrin and PIP2-LUVs is not cooperative. Finally, we found that ezrin FERM domain (area of ∼30 nm2) binding to a single PIP2 can block access to neighboring PIP2 molecules and thus contributes to lower the accessible PIP2 concentration. In addition, no evidence exists for a clustering of PIP2 induced by ezrin addition.  相似文献   

10.
The effect of oligomers of ethylene glycol (EG) on thermotropic phase transitions of dipalmitoylglycerophosphatidylcholine multilamellar vesicles (DPPC-MLV) were investigated. Diethylene glycol (di-EG) had a biphasic effect on transition temperature, reducing pre-transition temperature (Tp) at low concentrations but increasing main transition temperature (Tm) and extinguishing pre-transition at high concentration. Results of the X-ray diffraction method and the excimer method indicated that di-EG induced interdigitated gel phase (L beta 1 phase) in the DPPC membranes at high concentration. Phase diagram of temperature-di-EG concentration for DPPC-MLV was determined by use of X-ray diffraction and differential scanning calorimetry, which was similar to that of temperature-EG concentration. The minimum concentration of di-EG where L beta 1 phase was induced was 42%(w/v), which was larger than that of EG (30%(w/v)). On the other hand, in the presence of triethylene glycol (tri-EG), Tm and Tp increased with an increased in tri-EG concentration, as well as poly(ethylene glycol). These differences, between the effects of di-EG and those of tri-EG, might be due to the differences of their sizes.  相似文献   

11.
We have investigated the stability of giant unilamellar vesicles (GUVs) and large unilamellar vesicles (LUVs) of lipid membranes in the liquid-ordered phase (lo phase) against a detergent, Triton X-100. We found that in the presence of high concentrations of Triton X-100, the structure of GUVs and LUVs of dipalmitoyl-PC (DPPC)/cholesterol (chol) and sphingomyelin (SM)/chol membranes in the lo phase was stable and no leakage of fluorescent probes from the vesicles occurred. We also found that ether-linked dihexadecylphosphatidylcholine (DHPC) membranes containing more than 20 mol% cholesterol were in the lo phase, and that DHPC/chol-GUV and DHPC/chol-LUV in the lo phase were stable and no leakage of internal contents occurred in the presence of Triton X-100. In contrast, octylglucoside solution could easily break these GUVs and LUVs of the lo phase membranes and induced internal contents leakage. These data indicate that GUVs and LUVs of the lo phase membranes are very valuable for practical use.  相似文献   

12.
K M Eum  G Riedy  K H Langley  M F Roberts 《Biochemistry》1989,28(20):8206-8213
Small unilamellar vesicles which form when gel-state long-chain phosphatidylcholines are mixed with micellar short-chain lecithins undergo an increase in size as the long-chain species melts to its liquid-crystalline form. Analysis of the vesicle population with quasi-elastic light scattering shows that the particle size increases from 90-A radius to greater than 5000-A radius. Resonance energy transfer experiments show total mixing of lipid probes with unlabeled vesicles only when the Tm of the long-chain phosphatidylcholine is exceeded. This implies that the large size change represents a fusion process. Aqueous compartments are also mixed during this transition. 31P NMR analysis of the vesicle mixtures above the phase transition shows a great degree of heterogeneity with large unilamellar particles coexisting with oligo- and multilamellar structures. Upon cooling the vesicles below the Tm, the original size distribution (e.g., small unilamellar vesicles) is obtained, as monitored by both quasi-elastic light scattering and 31P NMR spectroscopy. This temperature-induced fusion of unilamellar vesicles is concentration dependent and can be abolished at lower total phospholipid concentrations. It occurs over a wide range of long-chain to short-chain ratios and occurs with 1-palmitoyl-2-stearoylphosphatidylcholine and dimyristoylphosphatidylcholine as well. Characterization of this fusion event is used to understand the anomalous kinetics of water-soluble phospholipases toward these unusual vesicles.  相似文献   

13.
The rates of non-electrolyte and ion diffusion across bilayer membranes consisting of choline plasmologens or of their alkyl and acyl analogs were studied. The influx of [14C]glucose, 86Rb+ and 36Cl? into small unilamellar vesicles made from a semisynthetic choline plasmalogen and from synthetic diacyl, alkylacyl and dialkyl analogs with comparable side chain compositions were measured. Rates of glucose and Rb+ diffusion are about equal in alkenylacyl- and diacyl-glycerophosphocholine (GPC) bilayers, but are reduced in dialkyl-GPC membranes; the permeability coefficients correlate with the packing densities of the respective choline glycerophospholipids in monolayers at the air water interface. Rates of chloride diffusion are consistently higher in membranes formed from phospholipids containing alkenyl or alkyl other bonds as compared to the diacyl analogs. Highest rates of Cl? diffusion are observed with choline plasmalogen vesicles. The phospholipid side chain composition has little influence on Cl? permeation, but glucose and Rb+ diffusion are markedly affected. Incorporation of cholesterol (30 mol%) into choline plasmalogen membranes reduces their solute permeability by approximately 70%. A similar effect is found with the other choline phospholipid analogs. Thus, the choline phospholipid—cholesterol interaction, as far as it is reflected in reduced bilayer permeability, is not influenced by the presence of the alkenylether bond of plasmalogens.  相似文献   

14.
High-sensitivity differential scanning calorimetry has been used to examine the interaction of bee venom melittin with dipalmitoylphosphatidylcholine fused unilamellar vesicles. Experiments were performed under conditions for which melittin in solution is either monomeric (in low salt) or tetrameric (in high salt). It was found that under both sets of conditions melittin abolishes the pretransition at a relatively high lipid-to-protein molar incubation ratio, Ri (about 200) and that at intermediate values of Ri it broadens the main transition profile and reduces the transition enthalpy. This provides evidence which suggests that melittin is at least partially inserted into the apolar region of the bilayer. Evident at low values of Ri are two peaks in the lipid thermal transition profiles, which may arise from a heterogeneous population of lipid vesicles formed through fusion induced by melittin, or by lipid phase separation. For those profiles which exhibited only one peak, transition enthalpies, normalized to those of the lipid in the absence of the protein, are plotted vs. the bound protein-to-lipid molar ratios for the experiments performed under the conditions which give monomeric and tetrameric melittin in solution. These plots yield straight lines, the slopes of which give the number of lipid molecules each protein molecule excludes from participating in the phase transition. These were found to be 9.9 +/- 0.7 and 4.1 +/- 0.5 for monomeric and tetrameric melittin, respectively. The results are discussed in terms of possible models for the binding of melittin to phospholipid vesicles. For simple hexagonal packing of lipid molecules, incorporation as an aggregate is favored when melittin is tetrameric in solution, whereas incorporation as a monomer is favored when melittin is monomeric in solution. For low-salt solutions, evidence is obtained for the contribution of free melittin to lipid fusion, perhaps by the formation of protein bridges between apposed vesicles.  相似文献   

15.
Stratum corneum lipids are relatively complex, and there is little detailed understanding of their chemical and physical properties at the molecular level. Large unilamellar vesicles (LUVs) with lipid compositions similar to those of stratum corneum were prepared at pH 9 with commercially available lipids. This system was used as a model system for molecular studies of stratum corneum lipids. LUVs were chosen as the model system as they are comparatively more stable and can be characterized more quantitatively in terms of lipid concentration, surface area, and volume than model systems such as lipid mixture suspensions, lipid films, and small unilamellar vesicles. Results from freeze-fracture and cryo electron microscopy studies of our LUVs showed spherical vesicles. Quasi-elastic light scattering measurements revealed a narrow size distribution, centering around 119 nm. At room temperature, the LUVs were stable for several weeks at pH 9 and for more than 15 h but less than 24 h at pH 6. Differential scanning calorimetry measurements indicated broad endothermic transitions centered near 60-65 degrees C, closely matching the transition temperature reported for stratum corneum lipid extracts. Spin probes, 5-doxylstearic acid and 12-doxylstearic acid, were used for electron paramagnetic resonance (EPR) studies of the molecular dynamics of the lipids. EPR results indicated more restricted motion near the polar headgroup region than near the center of the alkyl chain region. Motional profiles of the spin labels near the polar headgroup and within the alkyl chain region in the LUVs were obtained as a function of temperature, ranging from 25 to 90 degrees C. We also found that the partitioning between the lipid and aqueous phases for each spin probe was temperature dependent and was generally correlated with phase transitions observed by differential scanning calorimetry and with alkyl chain mobility observed by EPR. Thus, this LUV system is well suited for additional molecular studies under different experimental conditions.  相似文献   

16.
The stability of OmpA in large unilamellar vesicles of dilauroyl phosphatidylcholine was studied using different concentrations of urea. The effective energy of unfolding, as determined from refolding experiments, is greater than that for small sonicated unilamellar vesicles by an amount that is compatible with estimates of the elastic energy of highly curved vesicles. The on-rate for refolding and insertion is slower for large unilamellar vesicles than for small unilamellar vesicles, which indicates a contribution of vesicle strain also to the free energy of the transition state.  相似文献   

17.
Previous work from this laboratory and others has shown that the hydrolysis of pure dipalmitoylphosphatidylcholine (DPPC) liposomes by porcine pancreatic phospholipase A2 in the vicinity of the gel-to-liquid crystal phase transition is characterized by a slow initial phase followed by an apparent burst of activity. In this article we report a detailed quantitative analysis of the early time course of the hydrolysis of dipalmitoylphosphatidylcholine large unilamellar vesicles at 38 degrees C. Several kinetic models to quantitatively describe the data were considered. The most conservative model consistent with the kinetic data is one in which the enzyme initially binds the bilayer and becomes activated via a process that requires the formation of protein dimers on the surface of the membrane. The relevant kinetic parameters of the model are reported.  相似文献   

18.
Using both Brownian and molecular dynamics, we replicate many of the salient features of Kv1.2, including the current-voltage-concentration profiles and the binding affinity and binding mechanisms of charybdotoxin, a scorpion venom. We also elucidate how structural differences in the inner vestibule can give rise to significant differences in its permeation characteristics. Current-voltage-concentration profiles are constructed using Brownian dynamics simulations, based on the crystal structure 2A79. The results are compatible with experimental data, showing similar conductance, rectification, and saturation with current. Unlike KcsA, for example, the inner pore of Kv1.2 is mainly hydrophobic and neutral, and to explore the consequences of this, we investigate the effect of mutating neutral proline residues at the mouth of the inner vestibule to charged aspartate residues. We find an increased conductance, less inward rectification, and quicker saturation of the current-voltage profile. Our simulations use modifications to our Brownian dynamics program that extend the range of channels that can be usefully modeled. Using molecular dynamics, we investigate the binding of the charybdotoxin scorpion venom to the outer vestibule of the channel. A potential of mean force is derived using umbrella sampling, giving a dissociation constant within a factor of ∼2 to experimentally derived constants. The residues involved in the toxin binding are in agreement with experimental mutagenesis studies. We thus show that the experimental observations on the voltage-gated channel, including the toxin-channel interaction, can reliably be replicated by using the two widely used computational tools.  相似文献   

19.
The effect of loperamide, a drug belonging to the opiate family, on dimyristoyl phosphatidylcholine large unilamellar vesicles (DMPC LUV) was investigated by quasielastic light scattering (QLS) and Fourier transform infrared spectroscopy (FT-IR). Both techniques show that, in the presence of loperamide, DMPC LUV undergoes a two step transition in cooling: one step around the transition point of pure lipid vesicles, the other at a lower temperature. The temperature of the latter step transition is different for the head and tail regions of the drug-containing vesicles: FT-IR spectra demonstrate that the hydrophobic acyl chains transition starts at a temperature well above that of the interfacial region whereas the transition of the entire vesicle, explored by QLS, is broad and covers both temperature ranges. These transitions are thermally reversible in the FT-IR which measures local order but aggregation effects prevent the thermal reversibility of the QLS results. The nature of the drug-lipid interaction is also discussed.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号