共查询到20条相似文献,搜索用时 0 毫秒
1.
Many members of the TRP superfamily oligomerize in the ER before trafficking to the plasma membrane. For membrane localization of the non-selective cation channel TRPV4 specific domains in the N-terminus are required, but the role of the C-terminus in the oligomerization and trafficking process has been not determined until now. Therefore, the localization of recombinant TRPV4 in two cell models was analyzed: HaCaT keratinocytes that express TRPV4 endogenously were compared to CHO cells that are devoid of endogenous TRPV4. When deletions were introduced in the C-terminal domain three states of TRPV4 localization were defined: a truncated TRPV4 protein of 855 amino acids was exported to the plasma membrane like the full-length channel (871 aa) and was also functional. Mutants with a length of 828 to 844 amino acids remained in the ER of CHO cells, but in HaCaT cells plasma membrane localization was partially rescued by oligomerization with endogenous TRPV4. This was confirmed by coexpression of recombinant full-length TRPV4 together with these deletion mutants, which resulted in an almost complete plasma membrane localization of both proteins and significant FRET in the plasma membrane and the ER. All deletions upstream of amino acid 828 resulted in total ER retention that could not rescued by coexpression with the full-length protein. However, these deletion mutants did not impair export of full-length TRPV4, implying that no oligomerization took place. These data indicate that the C-terminus of TRPV4 is required for oligomerization, which takes place in the ER and precedes plasma membrane trafficking. 相似文献
2.
In eukaryotes, members of the Ero1 family control oxidative protein folding in the endoplasmic reticulum (ER). Yeast Ero1p is tightly associated with the ER membrane, despite cleavage of the leader peptide, the only hydrophobic sequence that could mediate lipid insertion. In contrast, human Ero1-Lalpha and a yeast mutant (Ero1pDeltaC) lacking the 127 C-terminal amino acids are soluble when expressed in yeast. Neither Ero1-Lalpha nor Ero1pDeltaC complements an ERO1 disrupted strain. Appending the yeast C-terminal tail to human Ero1-Lalpha restores membrane association and allows growth of ERO1 disrupted cells. Therefore, the tail of Ero1p mediates membrane association and is crucial for function. 相似文献
3.
Background
Bloom syndrome is a rare cancer-prone disorder in which the cells of affected persons have a high frequency of somatic mutation and genomic instability. Bloom syndrome cells have a distinctive high frequency of sister chromatid exchange and quadriradial formation. BLM, the protein altered in BS, is a member of the RecQ DNA helicase family, whose members share an average of 40% identity in the helicase domain and have divergent N-terminal and C-terminal flanking regions of variable lengths. The BLM DNA helicase has been shown to localize to the ND10 (nuclear domain 10) or PML (promyelocytic leukemia) nuclear bodies, where it associates with TOPIIIα, and to the nucleolus. 相似文献4.
Ana Eulalio Sigrun Helms Christoph Fritzsch Maria Fauser Elisa Izaurralde 《RNA (New York, N.Y.)》2009,15(6):1067-1077
Proteins of the GW182 family are essential for miRNA-mediated gene silencing in animal cells; they interact with Argonaute proteins (AGOs) and are required for both the translational repression and mRNA degradation mediated by miRNAs. To gain insight into the role of the GW182–AGO1 interaction in silencing, we generated protein mutants that do not interact and tested them in complementation assays. We show that silencing of miRNA targets requires the N-terminal domain of GW182, which interacts with AGO1 through multiple glycine–tryptophan (GW)-repeats. Indeed, a GW182 mutant that does not interact with AGO1 cannot rescue silencing in cells depleted of endogenous GW182. Conversely, silencing is impaired by mutations in AGO1 that strongly reduce the interaction with GW182 but not with miRNAs. We further show that a GW182 mutant that does not localize to P-bodies but interacts with AGO1 rescues silencing in GW182-depleted cells, even though in these cells, AGO1 also fails to localize to P-bodies. Finally, we show that in addition to the N-terminal AGO1-binding domain, the middle and C-terminal regions of GW182 (referred to as the bipartite silencing domain) are essential for silencing. Together our results indicate that miRNA silencing in animal cells is mediated by AGO1 in complex with GW182, and that P-body localization is not required for silencing. 相似文献
5.
Driller L Wellinger RJ Larrivee M Kremmer E Jaklin S Feldmann HM 《The Journal of biological chemistry》2000,275(32):24921-24927
The Yku heterodimer from Saccharomyces cerevisiae, comprising Yku70p and Yku80p, is involved in the maintenance of a normal telomeric DNA end structure and is an essential component of nonhomologous end joining (NHEJ). To investigate the role of the Yku70p subunit in these two different pathways, we generated C-terminal deletions of the Yku70 protein and examined their ability to complement the phenotypes of a yku70(-) strain. Deleting only the 30 C-terminal amino acids of Yku70p abolishes Yku DNA binding activity and causes a yku(-) phenotype; telomeres are shortened, and NHEJ is impaired. Using conditions in which at least as much mutant protein as full-length protein is normally detectable in cell extracts, deleting only 25 C-terminal amino acids of Yku70p results in no measurable effect on DNA binding of the Yku protein, and the cells are fully proficient for NHEJ. Nevertheless, these cells display considerably shortened telomeres, and significant amounts of single-stranded overhangs of the telomeric guanosine-rich strands are observed. Co-overexpression of this protein with Yku80p could rescue some but not all of the telomere-related phenotypes. Therefore, the C-terminal domain in Yku70p defines at least one domain that is especially involved in telomere maintenance but not in NHEJ. 相似文献
6.
Synaptotagmin (Syt) family members consist of six separate domains: a short amino terminus, a single transmembrane domain, a spacer domain, a C2A domain, a C2B domain and a short carboxyl (C) terminus. Despite sharing the same domain structures, several synaptotagmin isoforms show distinct subcellular localization. Syt IV is mainly localized at the Golgi, while Syt I, a possible Ca(2+)-sensor for secretory vesicles, is localized at dense-core vesicles and synaptic-like microvesicles in PC12 cells. In this study, we sought to identify the region responsible for the Golgi localization of Syt IV by immunocytochemical and biochemical analyses as a means of defining the distinct subcellular localization of the synaptotagmin family. We found that the unique C-terminus of the spacer domain (amino acid residues 73-144) between the transmembrane domain and the C2A domain is essential for the Golgi localization of Syt IV. In addition, the short C-terminus is probably involved in proper folding of the protein, especially the C2B domain. Without the C-terminus, Syt IVdeltaC proteins are not targeted to the Golgi and seem to colocalize with an endoplasmic reticulum (ER) marker (i.e. induce crystalloid ER-like structures). On the basis of these results, we propose that the divergent spacer domain among synaptotagmin isoforms may contain certain signals that determine the final destination of each isoform. 相似文献
7.
Phongsak T Sucharitakul J Thotsaporn K Oonanant W Yuvaniyama J Svasti J Ballou DP Chaiyen P 《The Journal of biological chemistry》2012,287(31):26213-26222
p-Hydroxyphenylacetate (HPA) 3-hydroxylase from Acinetobacter baumannii consists of a reductase component (C(1)) and an oxygenase component (C(2)). C(1) catalyzes the reduction of FMN by NADH to provide FMNH(-) as a substrate for C(2). The rate of reduction of flavin is enhanced ~20-fold by binding HPA. The N-terminal domain of C(1) is homologous to other flavin reductases, whereas the C-terminal domain (residues 192-315) is similar to MarR, a repressor protein involved in bacterial antibiotic resistance. In this study, three forms of truncated C(1) variants and single site mutation variants of residues Arg-21, Phe-216, Arg-217, Ile-246, and Arg-247 were constructed to investigate the role of the C-terminal domain in regulating C(1). In the absence of HPA, the C(1) variant in which residues 179-315 were removed (t178C(1)) was reduced by NADH and released FMNH(-) at the same rates as wild-type enzyme carries out these functions in the presence of HPA. In contrast, variants with residues 231-315 removed behaved similarly to the wild-type enzyme. Thus, residues 179-230 are involved in repressing the production of FMNH(-) in the absence of HPA. These results are consistent with the C-terminal domain in the wild-type enzyme being an autoinhibitory domain that upon binding the effector HPA undergoes conformational changes to allow faster flavin reduction and release. Most of the single site variants investigated had catalytic properties similar to those of the wild-type enzyme except for the F216A variant, which had a rate of reduction that was not stimulated by HPA. F216A could be involved with HPA binding or in the required conformational change for stimulation of flavin reduction by HPA. 相似文献
8.
The transient receptor potential vanilloid 4 (TRPV4) cation channel, a member of the TRP vanilloid subfamily, is expressed in a broad range of tissues where it participates in the generation of a Ca(2+) signal and/or depolarization of the membrane potential. Regulation of the abundance of TRPV4 at the cell surface is critical in osmo- and mechanotransduction. In this review, we discussed that the potential effect of Ca(2+) occurs via its action at an intracellular site in the C-terminus of the channel protein by the effect of the modulation on TRPV4 (such as 824 Ser residue phosphorylation), and its regulation for TRPV4 functions related with cell surface spread, wound healing or its polarity reorientation through its differential affinity with actin or tubulin. 相似文献
9.
Previous studies have demonstrated that the novel protein Gcp is essential for the viability of various bacterial species including Staphylococcus aureus; however, the reason why it is required for bacterial growth remains unclear. In order to explore the potential mechanisms of this essentiality, we performed RT-PCR analysis and revealed that the gcp gene (sa1854) was co-transcribed with sa1855, yeaZ (sa1856) and sa1857 genes, indicating these genes are located in the same operon. Furthermore, we demonstrated that Gcp interacts with YeaZ using a yeast two-hybrid (Y2H) system and in vitro pull down assays. To characterize the Gcp-YeaZ interaction, we performed alanine scanning mutagenesis on the residues of C-terminal segment of Gcp. We found that the mutations of the C-terminal Y317-F322 region abolished the interaction of Gcp and YeaZ, and the mutations of the D324-N329 and S332-Y336 regions alleviated Gcp binding to YeaZ. More importantly, we demonstrated that these key regions of Gcp are also necessary for the bacterial survival since these mutated Gcp could not complement the depletion of endogenous Gcp. Taken together, our data suggest that the interaction of Gcp and YeaZ may contribute to the essentiality of Gcp for S. aureus survival. Our findings provide new insights into the potential mechanisms and biological functions of this novel essential protein. 相似文献
10.
The C-terminal flexible domain of the heme chaperone CcmE is important but not essential for its function
下载免费PDF全文

CcmE is a heme chaperone active in the cytochrome c maturation pathway of Escherichia coli. It first binds heme covalently to strictly conserved histidine H130 and subsequently delivers it to apo-cytochrome c. The recently solved structure of soluble CcmE revealed a compact core consisting of a beta-barrel and a flexible C-terminal domain with a short alpha-helical turn. In order to elucidate the function of this poorly conserved domain, CcmE was truncated stepwise from the C terminus. Removal of all 29 amino acids up to crucial histidine 130 did not abolish heme binding completely. For detectable transfer of heme to type c cytochromes, only one additional residue, D131, was required, and for efficient cytochrome c maturation, the seven-residue sequence (131)DENYTPP(137) was required. When soluble forms of CcmE were expressed in the periplasm, the C-terminal domain had to be slightly longer to allow detection of holo-CcmE. Soluble full-length CcmE had low activity in cytochrome c maturation, indicating the importance of the N-terminal membrane anchor for the in vivo function of CcmE. 相似文献
11.
Nuclear pore complexes (NPCs) are large macromolecular assemblies that control all transport across the nuclear envelope. They are formed by about 30 nucleoporins (Nups), which can be roughly categorized into those forming the structural skeleton of the pore and those creating the central channel and thus providing the transport and gating properties of the NPC. Here we show that the conserved nucleoporin Nup93 is essential for NPC assembly and connects both portions of the NPC. Although the C-terminal domain of the protein is necessary and sufficient for the assembly of a minimal structural backbone, full-length Nup93 is required for the additional recruitment of the Nup62 complex and the establishment of transport-competent NPCs. 相似文献
12.
Journal of Plant Biochemistry and Biotechnology - APETALA1 (AP1) and CAULIFLOWER (CAL) are involved in floral meristem identity and suppress the inflorescence meristem program in flower meristem in... 相似文献
13.
14.
The N-terminal "beta-barrel" domain of 5-lipoxygenase is essential for nuclear membrane translocation 总被引:7,自引:0,他引:7
5-Lipoxygenase is the key enzyme in the formation of leukotrienes, which are potent lipid mediators of asthma pathophysiology. This enzyme translocates to the nuclear envelope in a calcium-dependent manner for leukotriene biosynthesis. Eight green fluorescent protein (GFP)-lipoxygenase constructs, representing the major human and mouse enzymes within this family, were constructed and their cDNAs transfected into human embryonic kidney 293 cells. Of these eight lipoxygenases, only the 5-lipoxygenase was clearly nuclear localized and translocated to the nuclear envelope upon stimulation with the calcium ionophore. The N-terminal "beta -barrel" domain of 5-lipoxygenase, but not the catalytic domain, was necessary and sufficient for nuclear envelope translocation. The GFP-N-terminal 5-lipoxygenase domain translocated faster than GFP-5-lipoxygenase. beta-Barrel/catalytic domain chimeras with 12- and 15-lipoxygenase indicated that only the N-terminal domain of 5-lipoxygenase could carry out this translocation function. Mutations of iron atom binding ligands (His550 or deletion of C-terminal isoleucine) that disrupt nuclear localization do not alter translocation capacity indicating distinct determinants of nuclear localization and translocation. Moreover, data show that GFP-5-lipoxygenase beta-barrel containing constructs can translocate to the nuclear membrane whether cytoplasmic or nuclear localized. Thus, the predicted beta-barrel domain of 5-lipoxygenase may function like the C2 domain within protein kinase C and cytosolic phospholipase A(2) with unique determinants that direct its localization to the nuclear envelope. 相似文献
15.
16.
Yukiko Shimada Mikako Maruya Shintaro Iwashita Yoshiko Ohno-Iwashita 《European journal of biochemistry》2002,269(24):6195-6203
There is much evidence to indicate that cholesterol forms lateral membrane microdomains (rafts), and to suggest their important role in cellular signaling. However, no probe has been produced to analyze cholesterol behavior, especially cholesterol movement in rafts, in real time. To obtain a potent tool for analyzing cholesterol dynamics in rafts, we prepared and characterized several truncated fragments of theta-toxin (perfringolysin O), a cholesterol-binding cytolysin, whose chemically modified form has been recently shown to bind selectively to rafts. BIAcore and structural analyses demonstrate that the C-terminal domain (domain 4) of the toxin is the smallest functional unit that has the same cholesterol-binding activity as the full-size toxin with structural stability. Cell membrane-bound recombinant domain 4 was detected in the floating low-density fractions and was found to be cofractionated with the raft-associated protein Lck, indicating that recombinant domain 4 also binds selectively to cholesterol-rich rafts. Furthermore, an enhanced green fluorescent protein-domain 4 fusion protein stains membrane surfaces in a cholesterol-dependent manner in living cells. Therefore, domain 4 of theta-toxin is an essential cholesterol-binding unit targeting to cholesterol in membrane rafts, providing a very useful tool for further studies on lipid rafts on cell surfaces and inside cells. 相似文献
17.
Vecerek B Rajkowitsch L Sonnleitner E Schroeder R Bläsi U 《Nucleic acids research》2008,36(1):133-143
The Escherichia coli RNA chaperone Hfq is involved in riboregulation of target mRNAs by small trans-encoded non-coding (ncRNAs). Previous structural and genetic studies revealed a RNA-binding surface on either site of the Hfq-hexamer, which suggested that one hexamer can bring together two RNAs in a pairwise fashion. The Hfq proteins of different bacteria consist of an evolutionarily conserved core, whereas there is considerable variation at the C-terminus, with the γ- and β-proteobacteria possessing the longest C-terminal extension. Using different model systems, we show that a C-terminally truncated variant of Hfq (Hfq65), comprising the conserved hexameric core of Hfq, is defective in auto- and riboregulation. Although Hfq65 retained the capacity to bind ncRNAs, and, as evidenced by fluorescence resonance energy transfer assays, to induce structural changes in the ncRNA DsrA, the truncated variant was unable to accommodate two non-complementary RNA oligonucleotides, and was defective in mRNA binding. These studies indicate that the C-terminal extension of E. coli Hfq constitutes a hitherto unrecognized RNA interaction surface with specificity for mRNAs. 相似文献
18.
The branched-chain alpha-keto acid dehydrogenase (BCKD) kinase (abbreviated as BCK) down-regulates activity of the mammalian mitochondrial BCKD complex by reversible phosphorylation of the decarboxylase (E1b) component of the complex. The binding of BCK to the holotransacylase (E2b) core of the BCKD complex results in the stimulation of BCK activity. Here we show that the lipoylated lipoic acid-bearing domain (lip-LBD) (residues 1-84) of E2b alone does not interact with BCK. However, lip-LBD constructs containing various lengths of the C-terminal hinge region of LBD are able to bind to BCK as measured by a newly developed solubility-based binding assay. Isothermal titration calorimetry measurements produced a dissociation constant of 8.06 x 10(-6) m and binding enthalpy of -3.68 kcal/mol for the interaction of BCK with a construct containing lip-LBD and the Glu-Glu-Asp-Xaa-Xaa-Glu sequence of the C-terminal hinge region of LBD. These thermodynamic parameters are similar to those obtained for binding of BCK to a lipoylated di-domain construct, which harbors LBD, the entire hinge region, and the downstream subunit-binding domain of E2b. Our data establish that the C-terminal hinge region of LBD containing the above negatively charged residues is essential for the interaction between the lip-LBD construct and BCK. 相似文献
19.
Processing of lysosomal beta-galactosidase. The C-terminal precursor fragment is an essential domain of the mature enzyme 总被引:1,自引:0,他引:1
Lysosomal beta-D-galactosidase (beta-gal), the enzyme deficient in the autosomal recessive disorders G(M1) gangliosidosis and Morquio B, is synthesized as an 85-kDa precursor that is C-terminally processed into a 64-66-kDa mature form. The released approximately 20-kDa proteolytic fragment was thought to be degraded. We now present evidence that it remains associated to the 64-kDa chain after partial proteolysis of the precursor. This polypeptide was found to copurify with beta-gal and protective protein/cathepsin A from mouse liver and Madin-Darby bovine kidney cells and was immunoprecipitated from human fibroblasts but not from fibroblasts of a G(M1) gangliosidosis and a galactosialidosis patient. Uptake of wild-type protective protein/cathepsin A by galactosialidosis fibroblasts resulted in a significant increase of mature and active beta-gal and its C-terminal fragment. Expression in COS-1 cells of mutant cDNAs encoding either the N-terminal or the C-terminal domain of beta-gal resulted in the synthesis of correctly sized polypeptides without catalytic activity. Only when co-expressed, the two subunits associate and become catalytically active. Our results suggest that the C terminus of beta-gal is an essential domain of the catalytically active enzyme and provide evidence that lysosomal beta-galactosidase is a two-subunit molecule. These data may give new significance to mutations in G(M1) gangliosidosis patients found in the C-terminal part of the molecule. 相似文献
20.
Federico Benetti Ivan Mi?eti? Flavio Carsughi Francesco Spinozzi Luigi Bubacco Mariano Beltramini 《Archives of biochemistry and biophysics》2011,(2):194
Plasma membrane calcium pumps (PMCAs) sustain a primary transport system for the specific removal of cytosolic calcium ions from eukaryotic cells. PMCAs are characterized by the presence of a C-terminal domain referred to as a regulatory domain. This domain is target of several regulatory mechanisms: activation by Ca2+-calmodulin complex and acidic phospholipids, phosphorylation by kinase A and C, proteolysis by calpain and oligomerization. As far as oligomerization is concerned, the C-terminal domain seems to be crucial for this process. We have cloned the C-terminal domain of the human PMCA isoform 1b, and characterized its properties in solution. The expressed protein maintains its tendency to oligomerize in aqueous solutions, but it is dissociated by amphipathic molecules such as diacylglycerol and sodium dodecyl sulphate. The presence of sodium dodecyl sulphate stabilizes the domain as a compact structure in monomeric form retaining the secondary structure elements, as shown by small angle neutron scattering and circular dichroism measurements. The importance of oligomerization for the regulation of PMCA activity and intracellular calcium concentration is discussed. 相似文献