首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The mechanism of yolk deposition into developing oocytes of Drosophila was investigated by following the fate of a reporter protein fused to a vitellogenin, or yolk polypeptide (YP). Embryos were transformed with a hybrid gene consisting of the promotor and amino terminal 430 codons of the Yp2 gene fused to the cytoplasmic form of the invertase gene from the yeast Saccharomyces cerevisiae. RNA hybridization experiments with established lines of transformed flies showed that the hybrid gene was expressed in female fat bodies and ovaries but not in any male cells. Immunoblotting and endoglycosidase digestion showed that the hybrid protein was secreted from fat body cells via the secretory pathway, transported in hemolymph, and sequestered into developing oocytes. Transfusion experiments with hemolymph and pure invertase showed that sequestration of invertase depended on its attachment to YP. Immunocytochemistry demonstrated that the hybrid protein became localized in yolk granules as oocytes developed. Females homozygous for the fusion gene are generally sterile; their eggs containing the hybrid protein often collapse and their embryos fail to develop, suggesting that the structure of the yolk polypeptides is important for embryonic development. These experiments show that YP2 carries structural information sufficient to direct a reporter protein from fat body cells, through the hemolymph, and into the yolk granules of developing oocytes. This work provides a means of identifying the features of yolk polypeptides that are responsible for their deposition into yolk during oogenesis.  相似文献   

2.
We have produced a library of monoclonal antibodies against yolk proteins of the mosquito Aedes aegypti. After the initial screening, 45 hybridoma cell lines were selected and cloned. Immunoblot analysis revealed three groups of monoclonal antibodies. One group recognized a 200-kDa polypeptide, the second a 68-kDa, and the third both of these polypeptides. While the affinity of binding by different antibodies varied widely, all monoclonal antibodies recognized these polypeptides only in extracts from vitellogenic fat bodies and ovaries. The antibodies were further characterized by video-enhanced immunofluorescence, which also showed that both yolk polypeptides originated in the fat body and accumulated in the oöcytes. The immunolocalization in trophocytes of the fat body suggested that monoclonal antibodies may recognize different stages of the secretory pathway of yolk polypeptides. Similar analysis of oöcytes indicated that our panel of antibodies recognizes different steps of processing of both 200-kDa and 68-kDa polypeptides, beginning with internalization by the oöcyte and ending with the final crystalline form in mature yolk bodies.  相似文献   

3.
Polyclonal antibodies directed against D. variabilis vitellin were utilized for immunocytochemistry at the ultrastructural level. We localized vitellogenin (Vg) in rough endoplasmic reticulum cisternae, secretory granules and secreted products of fat body trophocytes and midgut vitellogenic cells from feeding and ovipositing females. Vg was localized in the oocyte Golgi bodies and in the yolk bodies of both feeding and ovipositing females. Uptake of exogenous Vg was indicated by the presence of immunospecific gold probe in coated pits and coated vesicles at the apical plasma membrane of oocytes from females in rapid engorgement and oviposition. In unmated females little detectable evidence of Vg uptake by developing oocytes suggests that mating and host detachment signal the beginning of vitellogenesis. We conclude that fat body trophocytes, midgut vitellogenic cells and oocytes are involved in the synthesis and/or processing of Vg and that feeding is the signal associated with the initiation of Vg synthesis and/or processing.  相似文献   

4.
Monoclonal antibodies (mABs) have been raised against oocyte nuclear proteins of Xenopus laevis and X. borealis and have been screened for species specificity. Although about 40% of all germinal vesicle polypeptides differ between the two species as judged by two-dimensional gel analysis, most mABs react with polypeptides of both species. Biochemical analysis of the antigens by immunoblotting revealed that a homologue of each antigen of one species could be detected in the other species, despite frequent differences in molecular structure. Nevertheless, five strictly species-specific mABs have been identified. All five are directed against the same acidic polypeptide B3 of X. borealis, which is a structurally altered homologue of the protein N1, previously described in X. laevis germinal vesicles. In oocyte nuclei of hybrids between X. laevis females and X. borealis males, polypeptide of both species appear to be accumulated equivalently. Exceptions to this rule are most easily explained by differences between individuals and by the loss of certain alleles resulting from the cross.  相似文献   

5.
Summary The yolk proteins stored in Drosophila, oocytes for utilisation during embryogenesis are an ideal system for studying the regulation of gene expression during development. The 3 major polypeptides found in yolk in D. melanogaster are synthesised in the fat body and ovarian follicle cells and selectively accumulated by the oocyte during vitellogenesis. In order to understand more about their regulation and the mechanism of uptake, studies on other species are necessary.Three yolk polypeptides have previously been identified in the D. melanogaster sibling species (D. melanogaster, D. simulans, D. mauritiana, D. erecta, D. teissieri, D. orena and D. yakuba). In D. melanogaster three genes located on the X chromosome are known to code for these yolk polypeptides. in this study genomic Southern transfers and in situ hybridisation experiments were carried out on the sibling species. Using the three cloned yolk protein genes from D. melanogaster, homologous sequences could be detected in the sibling species. It is suggested that three yolk protein genes occur in each of these species, all being located on the X chromosome, and that two of the genes are very closely linked in these same species. Yolk protein gene-homologous DNA sequences have also been identified in two more distantly related species D. funebris and D. virilis.  相似文献   

6.
A S Raikhel  A O Lea 《Tissue & cell》1986,18(4):559-574
We have investigated the internalization pathways for a specific protein, vitellogenin, and a non-specific protein, horseradish peroxidase, in the mosquito oocyte in vivo. The internalized proteins were localized by electron microscopical immunocytochemistry or autoradiography; the relationship of their destination compartments with lysosomes was monitored by visualization of acid phosphatase. Proteins internalized by the oocyte follow either a specific accumulative route or a lysosomal degradative route. Via coated vesicles, both proteins enter the same compartment, the endosome, where they dissociate from membrane-binding sites. The route to their final destination depends on the presence of the specific ligand. In its absence, the degradative route is followed, and the endosome with non-specific protein fuses with lysosomes. In the presence of the specific ligand, the accumulative route is followed, and both specific and non-specific proteins are delivered into an accumulative compartment, the transitional yolk body. During the transformation of the transitional yolk body into the final storage compartment, a mature yolk body, vitellogenin undergoes crystallization, whereas the non-specific protein is concentrated in small vesicular extensions of the compartmental membrane. These vesicles are separated from the yolk bodies and apparently deliver the non-specific protein into the lysosomal system. We concluded that any protein bound to the membrane would be internalized by the oocyte, but only binding of the specific ligand to its receptor serves as a transmembrane signal stimulating the formation of accumulative compartments.  相似文献   

7.
Microinjection of transforming p21 ras protein induces maturation of Xenopus laevis oocytes, and the induction is blocked by coinjection of monoclonal antibody (Y13-259) against p21 ras proteins. Similar to other inducing agents, the effect of p21 ras protein is mediated via the appearance of maturation or meiosis-promoting factor activity. In addition, the neutralizing antibody markedly reduces oocyte maturation after insulin induction, whereas it fails to inhibit progesterone induction. Our results suggest that insulin induces maturation of oocytes via a different pathway than that of steroidal agents. The induction by insulin is ras dependent, and the action of ras may be directed at the steps before meiosis-promoting factor autocatalytic activation. These results suggest a role of p21 ras protein in the events associated with amphibian oocyte maturation.  相似文献   

8.
《Insect Biochemistry》1987,17(3):401-415
Phosphorylation of vitellogenin (yolk protein precursor) and vitellin (major yolk protein) polypeptides of Leucophaea maderae was studied by [32P]ortho phosphate labeling and subsequent sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) autoradiography. The vitellogenin molecule was isolated from the hemolymph and fat body by antibody precipitation and high-performance liquid chromatography (HPLC), and shown to consist of at least five polypeptides (“subunits”) which had apparent molecular masses of 155, 112, 95, 92 and 54 kD. Labeling studies with 32P showed that the covalently attached phosphorus was distributed in an uneven fashion among the five polypeptides. The two heavily-phosphorylated polypeptides, 112 and 54 kD, corresponded to the large and small, mature vitellin subunits. Quantitative SDS-PAGE analysis of long-term 32P-labeled vitellin showed that these large and small “subunits” contained 55 and 30%, respectively, of the total radioactivity.When fat body was pulse-labeled with 32P we found a heavily-phosphorylated intracellular 215 kD polypeptide which was precipitable with anti-vitellogenin. The synthesis of this intracellular precursorform of vitellogenin (pre-Vg) was under absolute juvenile hormone control. In vitro32P pulse-chase experiments showed that pre-Vg was proteolytically processed within the fat body into some (or possibly all) of the mature vitellogenin subnits. Furthermore, peptide mapping confirmed that all of the phosphorylated vitellogenin subunits were derived from pre-Vg. Since previous studies have shown that phosphoserine residues account for essentially all of the covalently-attached phosphorus of the native vitellogenin molecule, we speculate that the asymmetric pattern of vitellogenin and vitellin subunit-phosphorylation is due to an uneven distribution of phosphoserine residues along the initial pre-Vg polypeptide chain. Finally, we conclude that phosphorylation of vitellogenin occurred post-translationally in the fat body endoplasmic reticulum because we could identify 32P-labeled pre-Vg in purified microsomal vesicles but not in nascent vitellogenin polypeptide chains attached to vitellogenin polyribosomes.  相似文献   

9.
The mature eggs of Plodia interpunctella were found to contain four major polypeptides. These yolk polypeptides (YPs) were found to have approximate molecular weights of 153,000 daltons (YP1), 69,000 daltons (YP2), 43,000 daltons (YP3), and 33,000 daltons (YP4) as determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). In addition, we found YP1 was resolved by a 5% polyacrylamide gel into two separate polypeptides of 153,000 and 147,000 daltons. All of the YPs could be labeled in vivo or in vitro with [35S]-methionine. Yolk peptide 1 and YP3 were synthesized by fat body of pharate adult and adult females and secreted into the hemolymph. Yolk peptide 2 and YP4 were synthesized and secreted into incubation medium by ovaries that contained vitellogenic oocytes, but these polypeptides were not found in the hemolymph. Fat bodies of males synthesized and secreted an immunoprecipitable polypeptide similar to YP3 as well as immunoprecipitable polypeptides larger than 200,000 daltons that had no counterparts in the oocytes. Peptide mapping by protease digestion showed each YP to be cleaved into unique fragments, suggesting that no precursor-product relationship exists between the YPs. Ion exchange chromatography and gel permeation chromatography separated that yolk proteins into two groups with approximate molecular weights of 462,000 and 264,000 daltons. By resolving these peaks on SDS-PAGE, it was found that YP1 and YP3 formed the 462,000-dalton yolk protein and YP2 and YP4 formed the 264,000-dalton yolk protein.  相似文献   

10.
A S Raikhel 《Tissue & cell》1986,18(1):125-142
A massive and selective degradation of Golgi complexes, secretory granules, and RER is the mechanism responsible for the rapid termination of Vg secretion by trophocytes of the mosquito fat body. These cells are involved in an intensive synthesis of a glycoprotein, vitellogenin (Vg), which is accumulated by developing oocytes as yolk protein. Previously, assays for lysosomal enzymes have demonstrated that the cessation of Vg synthesis is characterized by a sharp increase in lysosomal activity; and fluorescent microscopy has shown that, during this intense lysosomal activity, Vg concentrates in lysosomes. In this report, electron microscopy combined with cytochemistry for lysosomal enzymes and localization of Vg with colloidal gold immunocytochemistry has shown that this lysosomal activity is directed towards selective degradation of Vg and organelles associated with its synthesis and secretion. Three organelles undergo lysosomal breakdown: the Golgi complex, Vg-containing secretory granules, and RER. The degradation of Golgi complexes occurs in two steps similar to that for RER: first, the organelle is sequestered by double isolation membranes, and the resulting pre-lysosome then fuses with a primary or secondary lysosome. In contrast, mature Vg-containing secretory granules fuse with lysosomes directly. This combination of crino- and autophagy is a specific, highly intense, and precisely timed event.  相似文献   

11.
《Insect Biochemistry》1988,18(3):287-294
The fat body of adult Sarcophaga bullata consists of different cell-types. The yolk polypeptides (YPs) are localized in secretory granules in the cytoplasm of female trophocyte fat body cells while the oenocytes and larval fat body cells are immunonegative. An antiserum against the larval serum protein 1 of Drosophila crossreacts on immunoblotting with several polypeptide bands in the haemolymph with mol. wt ∼80 kD. This antiserum specifically reacts with some storage granules of the persisting larval fat body cells and not with the other fat body cell types. The trophocyte fat body cells of male Sarcophaga treated with 20-OH-ecdysone, display a similar granular type of immunoreaction with an anti-YP antiserum as in vitellogenic females. Moreover, 20-OH-ecdysone induced in the fat body of males, in contrast to methoprene, synthesis of mRNA coding for YPs to a level as high as that in vitellogenic females, as shown in the reticulocyte lysate cell-free system.  相似文献   

12.
七星瓢虫成熟雌虫脂肪体总RNA和poly(A)~+RNA中可转译mRNA的水平约为雄虫和不成熟雌虫的两倍,其中所含的卵黄原蛋白mRNA可在体外转译系统中指导卵黄原蛋白多肽的合成。 雌虫取食人工饲料时,其脂肪体RNA中可转译mRNA的水平很低,不能指导卵黄原蛋白多肽的合成。保幼激素类似物能诱导可转译卵黄原蛋白mRNA的出现。  相似文献   

13.
We describe a provitellogenic stage, a previously unrecognized stage of follicle development in moths, and show that oocytes begin yolk sphere formation prior to the development of patency by the follicular epithelium. The vitellogenic activities of follicles from pharate adult femalePlodia interpunctella (Hübner) were determined by visualizing the subunits of vitellin (YP1 and YP3) and the follicular epithelium yolk protein (YP2 and YP4) using monospecific antisera to each subunit to immunolabel whole-mounted ovaries or ultrathin sections. At 92 h after pupation, yolk spheres that contained only YP2 began to proliferate in the oocytes. The inter-follicular epithelial cell spaces were closed at 92 h making vitellogenin inaccessible to the oocyte, and consequently, the vitellin subunits were not observed in the yolk spheres. YP2 uptake most likely occurred across the brush border from the follicular epithelial cells to the oocyte at this time. At 105 h, the inter-follicular epithelial cell spaces appeared closed yet trace amounts of labeling for vitellin were observed in the spaces and also in the yolk spheres along with YP2. Equivalent labeling for all four YPs in yolk spheres was finally observed at 112 h after pupation when the follicular epithelium had become patent. These data indicate that the provitellogenic stage is an extended transition period between the previtellogenic and vitellogenic stages that lasts for approximately 13 h, and it is marked at the beginning by YP2 yolk sphere formation in the oocyte and at the end by patency in the follicular epithelium.  相似文献   

14.
Oocytes of Xenopus laevis undergo maturation when injected with an affinity-purified antibody against the COOH-terminal decapeptide of the alpha subunit of the G-protein Gs, an antibody that inhibits Gs activity. Germinal vesicle breakdown, chromosome condensation, and polar body formation occur, with a time course similar to that for oocytes treated with progesterone. The alpha S antibody-injected oocytes also acquire the ability to be activated by sperm. Coinjection of the catalytic subunit of cAMP-dependent protein kinase, or incubation with cycloheximide, inhibits maturation in response to injection of the alpha S antibody; these experiments show that the alpha S antibody acts at an early point in the pathway leading to oocyte maturation, before formation of maturation promoting factor, and like progesterone, its action requires protein synthesis. Immunogold electron microscopy shows that alpha S is present in the yolk platelet membranes as well as the plasma membrane. These results support the hypothesis that progesterone acts by inhibiting alpha S, and suggest that the target of progesterone could include yolk platelet membranes as well as the plasma membrane.  相似文献   

15.
Starfish oocyte meiosis provides a good system for studying the mechanism for prometaphase chromosome movement. Since a protein sharing epitopes with sperm dynein might be a force generator for mitosis, the contribution of such a protein was assessed in this movement. Specific antibodies to heavy chains (HCs) and intermediate chains (ICs) of dynein subunits were affinity-purified from whole antidynein serum. We confirmed that the oocytes contain several polypeptides identical to sperm dynein subunits. The anti-HCs binding to in situ antigen was examined in the oocytes permeabilized with detergent at appropriate stages of maturation with special reference to tubulin and chromosomes, and the meiotic apparatus-establishing process was described in terms of a force generator (oocyte dynein). Before resumption of maturation, dynein HCs were particularly associated with prophase chromosomes within the germinal vesicle (GV). After GV breakdown, there was a striking local accumulation of dynein HCs in the "fading GV" (nuclear matrix). When chromosomes were pulled toward the central area between 2 asters, dynein was accumulated at first at the presumptive equator and then moved to the poles, showing uneven localization on the meiotic spindle.  相似文献   

16.
莫桑比克非鲫卵黄形成的电镜观察   总被引:21,自引:0,他引:21  
运用透射电镜观察了莫桑比克非鲫卵母细胞的生长.根据卵母细胞的大小和内部结构特征,将其分为四个时期:卵母细胞生长早期:卵黄泡形成期:卵黄积累期:卵黄积累完成期.本文着重研究了主要卵黄成分--卵黄球的形成过程.卵黄球属外源性卵黄,由卵母细胞通过微胞饮作用吸收肝脏合成的卵黄蛋白原后形成的.在卵黄大量积累前,卵母细胞内的线粒体和多泡体聚集成团,构成卵黄核,继而线粒体大量增殖,线粒体形状发生改变,形成同心多层膜结构,为大量的卵黄物质积累提供场所.最终形成的卵黄球由被膜、卵黄结晶体和两者之间的非结晶区三部分组成.    相似文献   

17.
Summary Insoluble proteins from the maturing follicle ofLocusta migratoria were analyzed by SDS-PAGE. A reproducible pattern of low molecular weight proteins was observed. Five of these proteins did not correspond to yolk or haemolymph proteins. At least two of these show marked quantitative changes during oocyte development. By in vitro incubation of follicles and fat body with a labelled precursor, and by the identification of the labelled polypeptides by SDS-PAGE, we could demonstrate that these two proteins are synthesized only during the time of vitellogenin uptake. This protein is probably a follicle product necessary for yolk formation. The other protein might be necessary for vitelline membrane and/or chorion formation.  相似文献   

18.
Summary The mutant fs(1) 1163 of Drosophila melanogaster, which was isolated by Gans et al. (1975) is a recessive homozygous female sterile at 18°C and a dominant female — sterile at 29°C. We reported previously that there are reduced quantities of the largest of the three yolk polypeptides in Drosophila melanogaster in the haemolymph and eggs of this mutant at 29°C (Bownes and Hames 1978 a). In this paper we show that the yolk protein defect maps within approximately 2.5 recombination units of the female sterility at 21±2.5 map units on the X-chromosome. The temperature-sensitive period of the yolk protein defect is after emergence. In vitro labelling of fs(1) 1163 ovaries and fat bodies showed that they were able to synthesise yolk polypeptide 1. Interestingly, studies on the proteins present in the various tissues indicate that the fat body tends to accumulate all three yolk polypeptides in the mutant. This phenotype is partially co-dominant in that an effect is seen in heterozygotes as well as homozygotes and is enhanced by increased temperature. This mutant could therefore have a defect (a) in the structural gene for yolk polypeptide 1, (b) in the processing and secretion enzyme systems; (c) in the fat body or all tissues leading to altered secretion properties.Mutants like fs(1) 1163 which alter specific steps in vitellogenesis should be of value for analysing the genetic and biochemical control of the synthesis, transport and sequestering of the yolk polypeptides during oogenesis.  相似文献   

19.
Specific mutations in the yolk protein genes, yp1 and yp2, of Drosophila melanogaster cause the yolk proteins (YPs) they encode to precipitate, ultimately resulting in female sterility. YPs of the yp1 mutant fs(1)1163 are secreted normally but then precipitate as globules and occasionally as crystalline fibers in the subbasement membrane space of the fat body (Butterworth et al., 1991, J. Cell Biol. 112, 727-737). The present ultrastructural and immunological studies of the fat body of the yp2 mutant fs(1)K313 show that YP also precipitates as globules in the same tissue compartment. The globules are also incapable of passing into the hemolymph but they are morphologically distinct from those of fs(1)1163. Similar analyses were performed on developing oocytes in wild type and both mutant strains. YP-containing aggregates, ultrastructurally similar to those in the fat body of each respective mutant, were found in the space between the plasmalemma and the vitelline membrane and embedded within the membrane itself. The evidence suggests that the precipitates interfere with the correct assembly of the eggshell membranes, leading to the sterile phenotype. Immunogold studies demonstrate that newly synthesized YPs in the normal and mutant strains share secretory vesicles with putative, vitelline membrane proteins and that the translocation of follicle cell YP is not through the membrane along the interfollicular spaces but directly through the plasmalemma facing the oocyte. Further the YP precipitates in the mutants permit visualization of the polarity of exocytosis of YP from the follicle cells.  相似文献   

20.
The yolk proteins of many insects, including Drosophila , are synthesised in the fat body of adult females and are transported through the haemolymph to be accumulated in the oocytes. We have used differences in the size and number of yolk polypeptides in different species of Drosophila to investigate the role of the ovary and of juvenile hormone in vitellogenesis.
The yolk proteins of eight species of Drosophila were compared with those of Drosophila melanogaster . Only Drosophila simulans had three yolk polypeptides of similar molecular weight to the three polypeptides in D. melanogaster and gave a high degree of cross reactivity with antibody raised against the yolk proteins of D. melanogaster . All other species had one to three bands on a sodium dodecyl sulphate gel representing the yolk polypeptides; they are between 44,000 and 49,500 daltons in molecular weight, showing weak cross reactivity with anti- D. melanogaster yolk antibody. Interspecies ovary transplants established that males of D. arizonensis and D.pseudoobscura which supported vitellogenesis of D. melanogaster ovaries, did so by permitting the implanted ovaries to synthesise their own yolk proteins. The synthetic juvenile hormone, ZR515, was unable to induce ovaries, which failed to develop in other species of males, to undergo vitellogenesis. In females, however, ZR515 was able to induce uptake of the yolk proteins of some of the species into the D. melanogaster donor ovaries, which had failed to develop in the absence of hormone. These interspecies differences in the yolk proteins have therefore been used to investigate the control of vitellogenesis and the role of juvenile hormone in this process in Drosophila .  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号