首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Mlodzik M 《The EMBO journal》1999,18(24):6873-6879
Functional tissues not only polarize their epithelia in the apical-basolateral axis, but also often display a polarity within the plane of the epithelium. In Drosophila, all adult structures are derived from epithelia called imaginal discs and display planar polarization; the eye and the wing are particularly well suited for analysis. Studies of their polarization have identified several conserved genes that regulate both nuclear signaling and cytoskeletal architecture. In particular, the Frizzled (Fz) receptor has been identified as a key component of polarity establishment in all tissues. The Fz signaling pathway and associated events are beginning to be unraveled, shedding light on a novel Wnt/Fz signaling cascade.  相似文献   

2.
During epithelial development cells become polarized along their apical-basal axis and some epithelia also exhibit polarity in the plane of the tissue. Mutations in the gene encoding a Drosophila Pak family serine/threonine kinase, dPak, disrupt the follicular epithelium that covers developing egg chambers during oogenesis. The follicular epithelium normally exhibits planar polarized organization of basal F-actin bundles such that they lie perpendicular to the anterior-posterior axis of the egg chamber, and requires contact with the basement membrane for apical-basal polarization. During oogenesis, dPak becomes localized to the basal end of follicle cells and is required for polarized organization of the basal actin cytoskeleton and for epithelial integrity and apical-basal polarity. The receptor protein tyrosine phosphatase Dlar and integrins, all receptors for extracellular matrix proteins, are required for polarization of the basal F-actin bundles, and for correct dPak localization in follicle cells. dpak mutant follicle cells show increased beta(Heavy)-spectrin levels, and we speculate that dPak regulation of beta(Heavy)-spectrin, a known participant in the maintenance of membrane domains, is required for correct apical-basal polarization of the membrane. We propose that dPak mediates communication between the basement membrane and intracellular proteins required for polarization of the basal F-actin and for apical-basal polarity.  相似文献   

3.
Several epitheliums exhibit a clear polarity that lies within the plane of the epithelium. This polarity, referred to as planar polarity or tissue polarity, is oriented perpendicular to the apical-basal polarity of the epithelium. Over the last two decades, the genetic and molecular bases of planar polarity have been intensively investigated in Drosophila. Recent studies have shown that establishment of planar polarity relies on the unipolar distribution of a small number of signaling molecules localizing at the apical cortex. Unipolar localization of planar polarity proteins defines two opposite and complementary cortical domains. These domains show a stereotyped orientation at the tissue level. Positioning of these cortical domains is coordinated at the tissue level by a second class of signaling molecules that form an activity gradient across the epithelium. Together these data have led to a general model of planar polarity establishment. Considering that planar polarity genes have been conserved from flies to vertebrates, this model may be useful for our understanding of epithelium biology in mammals.  相似文献   

4.
Cells that comprise tissues often need to coordinate cytoskeletal events to execute morphogenesis properly. For epithelial tissues, some of that coordination is accomplished by polarization of the cells within the plane of the epithelium. Two groups of genes--the Dachsous (Ds) and Frizzled (Fz) systems--play key roles in the establishment and maintenance of such polarity. There has been great progress in uncovering the how these genes work together to produce planar polarity, yet fundamental questions remain unanswered. Here, we study the Drosophila larval ventral epidermis to begin to address several of these questions. We show that ds and fz contribute independently to polarity and that they do so over spatially distinct domains. Furthermore, we find that the requirement for the Ds system changes as field size increases. Lastly, we find that Ds and its putative receptor Fat (Ft) are enriched in distinct patterns in the epithelium during embryonic development.  相似文献   

5.
The coordination of epithelial planar polarization is a critical step in the formation of well-ordered tissues. The process has been extensively studied in Drosophila, where genetic analysis has identified a set of "tissue polarity" genes that serve to coordinate planar polarity of cells in the developing wings, bristles and eyes. In the last several years, it has emerged that six of these genes encode junctional proteins. In the wing epithelium, these proteins undergo a polarized redistribution, forming separate proximal and distal cortical domains within each cell. The mechanisms that mediate cortical polarization and cue its direction have been the subject of intense investigation. Cuing the orientation of cortical polarization appears to depend on the atypical Cadherins Fat and Dachsous, although these proteins do not become polarized themselves, nor do they colocalize with components of polarized cortical domains. Interestingly, these Cadherins also act at earlier developmental stages to polarize tissue growth along the proximal-distal axis and it will be interesting to see whether these processes are mechanistically related. Once the axis of polarization is determined, cortical polarity seems to be propagated, at least locally, by a cascade of direct cell-cell interactions mediated by the proximal and distal domains. The cell biological mechanisms leading to polarization are still unclear, but the process depends on the control of Protein Phosphatase 2A activity by its regulatory subunit, Widerborst. Interestingly, Widerborst is found on a planar web of microtubules with connections to apical junctions, suggesting that these microtubules may have an important function in polarizing the cortex.  相似文献   

6.
Epithelial cells mostly orient the spindle along the plane of the epithelium (planar orientation) for mitosis to produce two identical daughter cells. The correct orientation of the spindle relies on the interaction between cortical polarity components and astral microtubules. Recent studies in mammalian tissue culture cells suggest that the apically localised atypical protein kinase C (aPKC) is important for the planar orientation of the mitotic spindle in dividing epithelial cells. Yet, in chicken neuroepithelial cells, aPKC is not required in vivo for spindle orientation, and it has been proposed that the polarization cues vary between different epithelial cell types and/or developmental processes. In order to investigate whether Drosophila aPKC is required for spindle orientation during symmetric division of epithelial cells, we took advantage of a previously isolated temperature-sensitive allele of aPKC. We showed that Drosophila aPKC is required in vivo for spindle planar orientation and apical exclusion of Pins (Raps). This suggests that the cortical cues necessary for spindle orientation are not only conserved between Drosophila and mammalian cells, but are also similar to those required for spindle apicobasal orientation during asymmetric cell division.  相似文献   

7.
The mechanosensory hair cells of the inner ear have emerged as one of the primary models for studying the development of planar polarity in vertebrates. Planar polarity is the polarized organization of cells or cellular structures in the plane of an epithelium. For hair cells, planar polarity is manifest at the subcellular level in the polarized organization of the stereociliary bundle and at the cellular level in the coordinated orientation of stereociliary bundles between adjacent cells. This latter organization is commonly called Planar Cell Polarity and has been described in the greatest detail for auditory hair cells of the cochlea. A third level of planar polarity, referred to as tissue polarity, occurs in the utricular and saccular maculae; two inner ear sensory organs that use hair cells to detect linear acceleration and gravity. In the utricle and saccule hair cells are divided between two groups that have opposite stereociliary bundle polarities and, as a result, are able to detect movements in opposite directions. Thus vestibular hair cells are a unique model system for studying planar polarity because polarization develops at three different anatomical scales in the same sensory organ. Moreover the system has the potential to be used to dissect functional interactions between molecules regulating planar polarity at each of the three levels. Here the significance of planar polarity on vestibular system function will be discussed, and the molecular mechanisms associated with development of planar polarity at each anatomical level will be reviewed. Additional aspects of planar polarity that are unique to the vestibular maculae will also be introduced.  相似文献   

8.
We have identified widerborst (wdb), a B' regulatory subunit of PP2A, as a conserved component of planar cell polarization mechanisms in both Drosophila and in zebrafish. In Drosophila, wdb acts at two steps during planar polarization of wing epithelial cells. It is required to organize tissue polarity proteins into proximal and distal cortical domains, thus determining wing hair orientation. It is also needed to generate the polarized membrane outgrowth that becomes the wing hair. Widerborst activates the catalytic subunit of PP2A and localizes to the distal side of a planar microtubule web that lies at the level of apical cell junctions. This suggests that polarized PP2A activation along the planar microtubule web is important for planar polarization. In zebrafish, two wdb homologs are required for convergent extension during gastrulation, supporting the conjecture that Drosophila planar cell polarization and vertebrate gastrulation movements are regulated by similar mechanisms.  相似文献   

9.
Auditory hair cells represent one of the most prominent examples of epithelial planar polarity. In the auditory sensory epithelium, planar polarity of individual hair cells is defined by their V-shaped hair bundle, the mechanotransduction organelle located on the apical surface. At the tissue level, all hair cells display uniform planar polarity across the epithelium. Although it is known that tissue planar polarity is controlled by non-canonical Wnt/planar cell polarity (PCP) signaling, the hair cell-intrinsic polarity machinery that establishes the V-shape of the hair bundle is poorly understood. Here, we show that the microtubule motor subunit Kif3a regulates hair cell polarization through both ciliary and non-ciliary mechanisms. Disruption of Kif3a in the inner ear led to absence of the kinocilium, a shortened cochlear duct and flattened hair bundle morphology. Moreover, basal bodies are mispositioned along both the apicobasal and planar polarity axes of mutant hair cells, and hair bundle orientation was uncoupled from the basal body position. We show that a non-ciliary function of Kif3a regulates localized cortical activity of p21-activated kinases (PAK), which in turn controls basal body positioning in hair cells. Our results demonstrate that Kif3a-PAK signaling coordinates planar polarization of the hair bundle and the basal body in hair cells, and establish Kif3a as a key component of the hair cell-intrinsic polarity machinery, which acts in concert with the tissue polarity pathway.  相似文献   

10.
Signalling through Frizzled (Fz)/planar cell polarity (PCP) is a conserved mechanism that polarizes cells along specific axes in a tissue. Genetic screens in Drosophila melanogaster pioneered the discovery of core PCP factors, which regulate the orientation of hairs on wings and facets in eyes. Recent genetic evidence shows that the Fz/PCP pathway is conserved in vertebrates and is crucial for disparate processes as gastrulation and sensory cell orientation. Fz/PCP signalling depends on complex interactions between core components, leading to their asymmetric distribution and ultimately polarized activity in a cell. Whereas several mechanistic aspects of PCP have been uncovered, the global coordination of this polarization remains debated.  相似文献   

11.
《Fly》2013,7(4):235-237
Apical basal cell polarity is a fundamental feature of all epithelial cells. Identification of the genes involved in the polarization of epithelial cells has begun to reveal the mechanisms underlying the establishment and maintenance of cell polarity. An important issue is to understand the molecular basis for localization of cell polarity proteins in the context of the developing organism. Bazooka (Baz, Drosophila homolog of Par-3) plays a crucial role in organizing cell polarity in several different tissues. In the ovarian follicle epithelium, Par-1 protein kinase regulates Baz localization to the apical cell cortex by excluding phosphorylated Baz from the lateral region. In photoreceptor cells of retinal epithelium, Baz is targeted to the adherens junction (AJ) instead of the apical domain. Our study suggests that in photoreceptors, Par-1 blocks the localization of Baz to AJ whereas protein phosphatase 2A (PP2A) promotes Baz localization by antagonizing the Par-1 effects. In this extra view, we provide a brief overview and perspective of our findings on the antagonistic function of Par-1 and PP2A in Baz localization during photoreceptor morphogenesis.  相似文献   

12.
Par-1 and PP2A: Yin-Yang of Bazooka localization   总被引:1,自引:0,他引:1  
Choi KW  Nam SC  Mukhopadhyay B 《Fly》2007,1(4):235-237
Apical basal cell polarity is a fundamental feature of all epithelial cells. Identification of the genes involved in the polarization of epithelial cells has begun to reveal the mechanisms underlying the establishment and maintenance of cell polarity. An important issue is to understand the molecular basis for localization of cell polarity proteins in the context of the developing organism. Bazooka (Baz, Drosophila homolog of Par-3) plays a crucial role in organizing cell polarity in several different tissues. In the ovarian follicle epithelium, Par-1 protein kinase regulates Baz localization to the apical cell cortex by excluding phosphorylated Baz from the lateral region. In photoreceptor cells of retinal epithelium, Baz is targeted to the adherens junction (AJ) instead of the apical domain. Our study suggests that in photoreceptors, Par-1 blocks the localization of Baz to AJ whereas protein phosphatase 2A (PP2A) promotes Baz localization by antagonizing the Par-1 effects. In this extra view, we provide a brief overview and perspective of our findings on the antagonistic function of Par-1 and PP2A in Baz localization during photoreceptor morphogenesis.  相似文献   

13.
Bray S 《Current biology : CB》2000,10(4):R155-R158
Epithelial structures, such as the wing hairs and ommatidia in Drosophila, are aligned in the plane of the epithelium. This planar polarity requires the transmembrane receptor Frizzled. Recent studies have shed new light on mechanisms that could be involved in generating or transducing the polarity signal.  相似文献   

14.
Many types of cell show different aspects of polarization. Epithelial cells display a ubiquitous apical-basolateral polarity but often are also polarized in the plane of the epithelium - a feature referred to as 'planar cell polarity' (PCP). In Drosophila all adult epithelial cuticular structures are polarized within the plane, whereas in vertebrates examples of PCP include aspects of skin development, features of the inner ear epithelium, and the morphology and behavior of mesenchymal cells undergoing the morphogenetic movement called 'convergent extension'. Recent advances in the study of PCP establishment are beginning to unravel the molecular mechanisms that underlie this aspect of cell and tissue differentiation. Here I discuss new developments in our molecular understanding of PCP in Drosophila and compare them towhat is known about the regulation of convergent extension in vertebrates.  相似文献   

15.
During development, directional cell division is a major mechanism for establishing the orientation of tissue growth. Drosophila neuroblasts undergo asymmetric divisions perpendicular to the overlying epithelium to produce descendant neurons on the opposite side, thereby orienting initial neural tissue growth. However, the mechanism remains elusive. We provide genetic evidence that extrinsic GPCR signaling determines the orientation of cortical polarity underlying asymmetric divisions of neuroblasts relative to the epithelium. The GPCR Tre1 activates the G protein oα subunit in neuroblasts by interacting with the epithelium to recruit Pins, which regulates spindle orientation. Because Pins associates with the Par-complex via Inscuteable, Tre1 consequently recruits the polarity complex to orthogonally orient the polarity axis to the epithelium. Given the universal role of the Par complex in cellular polarization, we propose that the GPCR-Pins system is a comprehensive mechanism controlling tissue polarity by orienting polarized stem cells and their divisions.  相似文献   

16.
Recent studies in Drosophila have shown that during the establishment of planar cell polarity in the developing wing, the protein products of several key planar polarity genes adopt asymmetric subcellular localisations. These asymmetric distributions precede other signs of overt polarisation of the cells in the planar axis, and prefigure the final polarity adopted. This review describes what is known about this phenomenon and its genetic control. Possible mechanisms for establishing asymmetric subcellular localisations, and its likely significance, are discussed.  相似文献   

17.
Mihály J  Matusek T  Pataki C 《The FEBS journal》2005,272(13):3241-3252
The formation of properly differentiated organs often requires the planar coordination of cell polarization within the tissues. Such planar cell polarization (PCP) events are best studied in Drosophila, where many of the key players, known as PCP genes, have already been identified. Genetic analysis of the PCP genes suggests that the establishment of polarity consists of three major steps. The first step involves the generation of a global polarity cue; this in turn promotes the second step, the redistribution of the core PCP proteins, leading to the formation of asymmetrically localized signaling centers. During the third step, these complexes control tissue-specific cellular responses through the activation of cell type specific effector genes. Here we discuss some of the most recent advances that have provided valuable new insight into each of the three major steps of planar cell polarization.  相似文献   

18.
The structure and function of epithelial sheets generally depend on apicobasal polarization, which is achieved and maintained by linking asymmetrically distributed intercellular junctions to the cytoskeleton of individual cells. Recent studies in both Drosophila and vertebrate epithelia have yielded new insights into the conserved mechanisms by which apicobasal polarity is established and maintained during development. In mature polarized epithelia, apicobasal polarity is important for the establishment of adhesive junctions and the formation of a paracellular diffusion barrier that prevents the movement of solutes across the epithelium. Recent findings show that segregation of ligand and receptor with one on each side of this barrier can be a crucial regulator of cell-cell signaling events.  相似文献   

19.
In the mammalian cochlea, stereociliary bundles located on mechanosensory hair cells within the sensory epithelium are unidirectionally oriented. Development of this planar polarity is necessary for normal hearing as stereociliary bundles are only sensitive to vibrations in a single plane; however, the mechanisms governing their orientation are unknown. We report that Wnt signaling regulates the development of unidirectional stereociliary bundle orientation. In vitro application of Wnt7a protein or inhibitors of Wnt signaling, secreted Frizzled-related protein 1 or Wnt inhibitory factor 1, disrupts bundle orientation. Moreover, Wnt7a is expressed in a pattern consistent with a role in the polarization of the developing stereociliary bundles. We propose that Wnt signaling across the region of developing outer hair cells gives rise to planar polarity in the mammalian cochlea.  相似文献   

20.
During planar polarization of the Drosophila wing epithelium, the homophilic adhesion molecule Flamingo localizes to proximal/distal cell boundaries in response to Frizzled signaling; perturbing Frizzled signaling alters Flamingo distribution, many cell diameters distant, by a mechanism that is not well understood. This work identifies a tissue polarity gene, diego, that comprises six ankyrin repeats and colocalizes with Flamingo at proximal/distal boundaries. Diego is specifically required for polarized accumulation of Flamingo and drives ectopic clustering of Flamingo when overexpressed. Our data suggest that Frizzled acts through Diego to promote local clustering of Flamingo, and that clustering of Diego and Flamingo in one cell nonautonomously propagates to others.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号