首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 656 毫秒
1.
Two apple genetic linkage maps were constructed using amplified fragment length polymorphisms (AFLPs), simple sequence repeats (SSRs), random amplified polymorphic DNAs (RAPDs), and expressed sequence tag (EST)-derived markers in combination with a pseudo-testcross mapping strategy in which the cultivars ‘Ralls Janet’ and ‘Delicious’ were used as the respective seed parents. Mitsubakaido (Malus sieboldii) was used as the pollen parent for each of the segregating F1 populations. Expressed sequence tag data were obtained from the random sequencing of cDNA libraries constructed from in vitro cultured shoots and maturing fruits of cv ‘Fuji’, which is the offspring of a cross between ‘Ralls Janet’ and ‘Delicious’. In addition, a number of published gene sequences were used to develop markers for mapping. The ‘Ralls Janet’ map consisted of 346 markers (178 AFLPs, 95 RAPDs, 54 SSRs, 18 ESTs, and the S locus) in 17 linkage groups, with a total length of 1082 cM, while that of ‘Delicious’ comprised 300 markers (120 AFLPs, 81 RAPDs, 64 SSRs, 32 ESTs, and the S, Rf, and MdACS-1 loci) on 17 linkage groups spanning 1031 cM. These maps are amenable to comparisons with previously published maps of ‘Fiesta’ and ‘Discovery’ (Liebhard et al., Mol Breed 10:217–241, 2002; Liebhard et al., Theor Appl Genet 106:1497–1508, 2003a) because several of the SSRs (one to three markers per linkage group) were used in all of the maps. Distorted marker segregation was observed in three and two regions of the ‘Ralls Janet’ and ‘Delicious’ maps, respectively. These regions were localized in different parts of the genome from those in previously reported apple linkage maps. This marker distortion may be dependent on the combinations of cultivars used for map construction.  相似文献   

2.
Marker-assisted selection (MAS) offers quick and reliable prediction of the phenotypes of seedlings in large populations and thus opens new approaches for selection to breeders of apple (Malus x domestica Borkh.). The development of framework maps enables the discovery of genetic markers linked to desired traits. Although genetic maps have been reported for apple scion cultivars, none has previously been constructed for apple rootstocks. We report the construction of framework genetic maps in a cross between ‘M.9’ (‘Malling 9’) and ‘R.5’ (‘Robusta 5’) apple rootstocks. The maps comprise 224 simple sequence repeat (SSR) markers, 18 sequence-characterised amplified regions, 14 single nucleotide polymorphisms and 42 random amplified polymorphic DNAs. A new set of 47 polymorphic SSRs was developed from apple EST sequences and used for construction of this rootstock map. All 17 linkage groups have been identified and aligned to existing apple genetic maps. The maps span 1,175.7 cM (‘M.9’) and 1,086.7 cM (‘R.5’). To improve the efficiency of mapping markers to this framework map, we developed a bin mapping set. Applications of these new genetic maps include the elucidation of the genetic basis of the dwarfing effect of the apple rootstock ‘M.9’ and the analysis of disease and insect resistance traits such as fire blight (Erwinia amylovora), apple scab (Venturia inaequalis) and woolly apple aphid (Eriosoma lanigerum). Markers for traits mapped in this population will be of direct use to apple breeders for MAS and for identification of causative genes by map-based cloning.  相似文献   

3.
Abundant, codominant simple sequence repeats (SSRs) markers can be used for constructing genetic linkage maps and in marker-assisted breeding programs. Enrichment methods for SSR motifs were optimized with the ultimate aim of developing numerous loci in flowering dogwood (C. florida L.) genome. Small insert libraries using four motifs (GT, CT, TGG, and AAC) were constructed with C. florida ‘Cherokee Brave’ deoxyribonucleic acid (DNA). Colony polymerase chain reaction (PCR) of 2,208 selected clones with three primers we reported previously indicated that 47% or 1,034 of the clones harbored one of the four targeted SSR motifs. Sequencing the putative positive clones confirmed that nearly 99% (1,021 of 1,034) of them contained the desired motifs. Of the 871 unique SSR loci, 617 were dinucleotide repeats (70.8%), and 254 were trinucleotide or longer repeats (29.2%). In total, 379 SSR loci had perfect structure, 237 had interrupted, and 255 had compound structure. Primer pairs were designed from 351 unique sequences. The ability of the 351 SSR primer pairs to amplify specific loci was evaluated with genomic DNA of ‘Appalachian Spring’ and ‘Cherokee Brave’. Of these primers, 311 successfully amplified product(s) with ‘Cherokee Brave’ DNA, 21 produced weak or faint products, and 19 did not amplify any products. Additionally, 218 of the 311 primers pairs revealed polymorphisms between the two cultivars, and 20 out of 218 primers detected an average of 13.7 alleles from 38 selected Cornus species and hybrids. These SSR loci constitute a valuable resource of ideal markers for both genetic linkage mapping and gene tagging of flowering dogwood. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

4.
Linkage maps of the apricot accessions ‘Lito’ and ‘BO 81604311’ were constructed using a total of 185 simple sequence repeat (SSR) markers sampled from those isolated in peach, almond, apricot and cherry; 74 were derived from a new apricot genomic library enriched for AG/CT microsatellite repeats (UDAp series), and in total, 98 had never been mapped in Prunus before. Eight linkage groups putatively corresponding to the eight haploid apricot chromosomes were identified for each parent. The two maps were 504 and 620 cM long, respectively, with 96 anchor markers showing a complete co-linearity between the two genomes. As few as three gaps larger than 15 cM were present in ‘Lito’ and six in the male parent; the maps align well with all the available SSR-based Prunus maps through the many common anchor loci. Only occasionally inverted positions between adjacent markers were found, and this can be explained by the small size of cross populations analysed in these Prunus maps and in those reported in literature. The newly developed apricot SSRs will help saturating the existing Prunus maps and will extend the choice of markers in the development of genetic maps for new breeding populations.  相似文献   

5.
Loquat [Eriobotrya japonica (Thunb.) Lindl.] is a Rosaceae fruit species of growing interest as an alternative to the main fruit crops. However, only a few genetic studies have been carried out on this species. This paper reports the construction of the first genetic maps of two loquat cultivars based on AFLP and microsatellite markers from Malus, Eriobotrya, Pyrus and Prunus genera. An F1 population consisting of 81 individuals, derived from the cross between ‘Algerie’ and ‘Zaozhong-6’ cultivars, was used to construct both maps. A total of 111 scorable simple sequence repeat (SSR) loci resulted from the testing of 440 SSR primer pairs in the analyzed progeny and the SSR transferability to Eriobotrya was found to be 74% from apple, 58% from pear and 49% from Prunus spp. In addition, 183 AFLP polymorphic bands were produced using 42 primer combinations. The ‘Algerie’ map was organized in 17 linkage groups covering a distance of 900 cM and comprising 177 loci (83 SSRs and 94 AFLPs) with an average marker distance of 5.1 cM. Self-incompatibility trait was mapped at the distal part of the LG17 linkage group, as previously reported in Malus and Pyrus. The ‘Zaozhong-6’ map covered 870 cM comprising 146 loci (64 SSRs and 82 AFLPs) with an average marker distance of 5.9 cM. The 44 SSRs and the 48 AFLPs share in common by both maps were essentially collinear and, moreover, the order of the 75% of apple and pear SSRs mapped in Eriobotrya was shown to be consistent across the Maloideae subfamily. As a whole, these maps represent a useful tool to facilitate loquat breeding and an interesting framework for map comparison in the Rosaceae.  相似文献   

6.
Plum pox virus (sharka; PPV) can cause severe crop loss in economically important Prunus species such as peach, plum, apricot, and cherry. Of these species, certain apricot cultivars (‘Stark Early Orange’, ‘Goldrich’, ‘Harlayne’) display significant levels of resistance to the disease and are the genetic substrate for studies of several xlaboratories working cooperatively to genetically characterize and mark the resistance locus or loci for marker-assisted breeding. The goals of the work presented in this communication are the characterization of the genetics of PPV resistance in ‘Stark Early Orange’ and the development of co-dominant molecular markers for marker-assisted selection (MAS) in PPV resistance breeding. We present the first genetic linkage map for an apricot backcross population of ‘Stark Early Orange’ and the susceptible cultivar ‘Vestar’ that segregates for resistance to PPV. This map is comprised of 357 loci (330 amplified fragment length polymorphisms (AFLPs), 26 simple sequence repeats (SSRs), and 1 morphological marker for PPV resistance) assigned to eight linkage groups. Twenty-two of the mapped SSRs are shared in common with genetic reference map for Prunus (T × E; Joobeur et al. 1998) and anchor our apricot map to the general Prunus map. A PPV resistance locus was mapped in linkage group 1 and four AFLP markers segregating with the PPV resistance trait, identified through bulk segregant analysis, facilitated the development of SSRs in this region. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users. Lalli, D.A. and Salava, J. contributed equally to this work.  相似文献   

7.
Woolly apple aphid (WAA; Eriosoma lanigerum Hausm.) can be a major economic problem to apple growers in most parts of the world, and resistance breeding provides a sustainable means to control this pest. We report molecular markers for three genes conferring WAA resistance and placing them on two linkage groups (LG) on the genetic map of apple. The Er1 and Er2 genes derived from ‘Northern Spy’ and ‘Robusta 5,’ respectively, are the two major genes that breeders have used to date to improve the resistance of apple rootstocks to this pest. The gene Er3, from ‘Aotea 1’ (an accession classified as Malus sieboldii), is a new major gene for WAA resistance. Genetic markers linked to the Er1 and Er3 genes were identified by screening random amplification of polymorphic deoxyribonucleic acid (DNA; RAPD) markers across DNA bulks from resistant and susceptible plants from populations segregating for these genes. The closest RAPD markers were converted into sequence-characterized amplified region markers and the genome location of these two genes was assigned to LG 08 by aligning the maps around the genes with a reference map of ‘Discovery’ using microsatellite markers. The Er2 gene was located on LG 17 of ‘Robusta 5’ using a genetic map developed in a M.9 × ‘Robusta 5’ progeny. Markers for each of the genes were validated for their usefulness for marker-assisted selection in separate populations. The potential use of the genetic markers for these genes in the breeding of apple cultivars with durable resistance to WAA is discussed.  相似文献   

8.
Map-based cloning to find genes of interest, markerassisted selection (MAS), and marker-assisted breeding (MAB) all require good genetic maps with high reproducible markers. For map construction as well as chromosome assignment, development of single copy PCR-based markers and map integration process are necessary. In this study, the 132 markers (57 STS from BAC-end sequences, 13 STS from RFLP, and 62 SSR) were newly developed as single copy type PCR-based markers. They were used together with 1830 markers previously developed in our lab to construct an integrated map with the Joinmap 3.0 program. This integrated map contained 169 SSR, 354 RFLP, 23 STS from BAC-end sequences, 6 STS from RFLP, 152 AFLP, 51 WRKY, and 99 rRAMP markers on 12 chromosomes. The integrated map contained four genetic maps of two interspecific (Capsicum annuum ‘TF68’ and C. chinense ‘Habanero’) and two intraspecific (C. annuum ‘CM334’ and C. annuum ‘Chilsungcho’) populations of peppers. This constructed integrated map consisted of 805 markers (map distance of 1858 cM) in interspecific populations and 745 markers (map distance of 1892 cM) in intraspecific populations. The used pepper STS were first developed from end sequences of BAC clones from Capsicum annuum ‘CM334’. This integrated map will provide useful information for construction of future pepper genetic maps and for assignment of linkage groups to pepper chromosomes.  相似文献   

9.
One of the major concerns in genetic characterization and breeding of cultivated flax is the lack of informative microsatellite markers (SSRs). In this regard, the development of SSRs using molecular methods might be time-consuming, laborious, and expensive. On the other hand, using bioinformatics to mine sequences in public databases enables a cost-effective discovery of SSRs. A total of 3,242 Linum usitatissimum genomic sequences were surveyed for the identification of SSRs. Among them, 118 non-redundant sequences containing repeats were selected for designing primers. The most abundant motifs were tri- (72.4%) and dinudeotide (16.6%), within which AGG/CCT and AG/CT were predominant. Primers were tested for polymorphism in 60 L. usitatissimum cultivars/accessions including 57 linseed and three fiber flax. Eighty-eight pairs gave amplifications within the expected size range while 60 pairs were found to be polymorphic. The mean number of alleles amplified per primer was 3.0 (range, 2–8; 180 total alleles). The mean polymorphism information content (PIC) value was 0.39 (range, 0.06–0.87), and the highest average PIC was observed in dinucleotide SSRs (0.41). The SSR data mining presented here demonstrates the usefulness of in silico development of microsatellites. These novel genomic SSR markers could be used in genetic diversity studies, the development of genetic linkage maps, quantitative trait loci mapping, association mapping, and marker-assisted selection.  相似文献   

10.
 A linkage map of the pea (Pisum sativum L.) genome is presented which is based on F2 plants produced by crossing the marrowfat cultivar ‘Primo’ and the blue-pea breeding line ‘OSU442-15’. This linkage map consists of 209 markers and covers 1330 cM (Kosambi units) and includes RFLP, RAPD and AFLP markers. By mapping a number of anchor loci, the ‘Primo’בOSU442-15’ map has been related to other pea linkage maps. A feature of the map is the incorporation of 29 loci representing genes of known function, obtained from other laboratories. The map also contains RFLP loci detected using sequence-characterized cDNA clones developed in our laboratory. The putative identities of 38 of these cDNA clones were assigned by examining public-sequence databases for protein or nucleotide-sequence similarities. The conversion of sequence-characterized pea cDNAs into PCR-amplifiable and polymorphic sequence-tagged sites (STSs) was investigated using 18 pairs of primers designed for single-copy sequences. Eleven polymorphic STSs were developed. Received: 18 June 1997 / Accepted: 11 August 1997  相似文献   

11.
Development of 1,030 genomic SSR markers in switchgrass   总被引:1,自引:0,他引:1  
Switchgrass, Panicum virgatum L., a native to the tall grass prairies in North America, has been grown for soil conservation and herbage production in the USA and recently widely recognized as a promising dedicated cellulosic bioenergy crop. A large amount of codominant molecular markers including simple sequence repeats (SSRs) are required for the construction of linkage maps and implementation of molecular breeding strategies to develop superior switchgrass cultivars. The objectives of this study were (1) to identify SSR-containing clones and to design PCR primer pairs (PPs) in SSR-enriched genomic libraries, and (2) to validate and characterize the designed SSR PPs. Five genomic SSR enriched libraries were constructed using genomic DNA of ‘SL93 7 × 15’, a switchgrass genotype selected in an Oklahoma State University (OSU) southern lowland breeding population. A total of 3,046 clones from four libraries enriched in (CA/TG)n, (GA/TC)n, (CAG/CTG)n and (AAG/CTT)n SSR repeats were sequenced at the OSU Core Facility. From the sequences, we isolated 1,300 unique SSR-containing clones, from which we designed 1,398 PPs using SSR Locator V.1 software. Among the designed PPs, 1,030 (73.7%) amplified reproducible and strong bands with expected fragment size, and 802 detected polymorphic alleles, in SL93 7 × 15 and ‘NL94 16 × 13’, two parents of one mapping population. All of the four libraries contained a high rate of perfect SSR repeat types, ranging from 62.7 to 76.2%. Polymorphism of the effective SSR markers was also tested in two lowland and two upland switchgrass cultivars, encompassing ‘Alamo’ and ‘Kanlow’, and ‘Blackwell’ and ‘Dacotah’, respectively. The developed SSR markers should be useful in genetic and breeding research in switchgrass.  相似文献   

12.
A consensus map of rye (Secale cereale L.) was constructed using JoinMap 2.0 based on mapping data from five different mapping populations, including ‘UC90’ × ‘E-line’, ‘P87’ × ‘P105’, ‘I0.1-line’ × ‘I0.1-line’, ‘E-line’ × ‘R-line’, and ‘Ds2’ × ‘RxL10’. The integration of the five mapping populations resulted in a 779-cM map containing 501 markers with the number of markers per chromosome ranging from 57 on 1R to 86 on 4R. The linkage sizes ranged from 71.5 cM on 2R to 148.7 cM on 4R. A comparison of the individual maps to the consensus map revealed that the linear locus order was generally in good agreement between the various populations, but the 4R orientations were not consistent among the five individual maps. The 4R short arm and long arm assignments were switched between the two population maps involving the ‘E-line’ parent and the other three individual maps. Map comparisons also indicated that marker order variations exist among the five individual maps. However, the chromosome 5R showed very little marker order variation among the five maps. The consensus map not only integrated the linkage data from different maps, but also greatly increased the map resolution, thus, facilitating molecular breeding activities involving rye and triticale.  相似文献   

13.
Grapevine rootstock cultivar ‘B?rner’ is a hybrid of Vitis riparia and Vitis cinerea Arnold that shows high resistance to phylloxera (Daktulosphaira vitifoliae Fitch). To localize the determinants of phylloxera root resistance, the susceptible grapevine V3125 (Vitis vinifera ‘Schiava grossa’ × ‘Riesling’) was crossed to ‘B?rner’. Genetic framework maps were built from the progeny. 235 microsatellite markers were placed on the integrated parental map. They cover 1,155.98 cM on 19 linkage groups with an average marker distance of 4.8 cM. Phylloxera resistance was scored by counting nodosities after inoculation of the root system. Progeny plants were triplicated and experimentally infected in 2 years. A scan of the genetic maps indicated a quantitative trait locus on linkage group 13. This region was targeted by six microsatellite-type markers newly developed from the V. vinifera model genome sequence. Two of these appear closely linked to the trait, and can be useful for marker-assisted breeding.  相似文献   

14.
A series of 320 mapped simple sequence repeats (SSRs) have been used to screen the allelic diversity of tetraploid Gossypium species. Fourty-seven genotypes were analyzed representing (i) the wide spectrum of diversity of the cultivated pool and of the primitive landraces of species G. hirsutum (‘marie-galante’, ‘punctatum’, ‘richmondi’, ‘morrilli’, ‘palmeri’, and ‘latifolium’, and ‘yucatanense’), and (ii) species G. barbadense, G. darwinii and G. tomentosum. The polymorphism of 201 SSR loci revealed 1128 allelic variants ranging from 3 to 17 per locus. Neighbor-joining (NJ) method based on genetic dissimilarities produced groupings consistent with the assignments of accessions both at species and at race level. Our data confirmed the proximity of the Galapagos endemic species G. darwinii to species G. barbadense. Within species G. hirsutum, and as compared to the other 6 races, race yucatanense appeared as the most distant from cultivated genotypes. Race yucatanense also exhibited the highest number of unique alleles. The important informative heterogeneity of the 201 SSR loci was exploited to select the most polymorphic ones that were assembled into three series of genome-wide (i.e. each homoeologous AD chromosome pair being equally represented) and mutliplexable (× 3) SSRs. Using one of these ‘genotyping set’, consisting of 39 SSRs (one 3-plex for each of the 13 AD chromosomes pairs) or 45 loci, we were able to assess the relationships between accessions and the topology in the genetic diversity sampled. Such genotyping set of highly informative SSR markers assembled in PCR-multiplex, while increasing genotyping throughput, will be applicable for molecular genetic diversity studies of large germplasm collections. Electronic Supplementary Material Supplementary material is available in the online version of this article at and is accessible for authorized users.  相似文献   

15.
The linkage maps of the cultivated strawberry, Fragaria × ananassa (2n = 8x = 56) that have been reported to date have been developed predominantly from AFLPs, along with supplementation with transferrable microsatellite (SSR) markers. For the investigation of the inheritance of morphological characters in the cultivated strawberry and for the development of tools for marker-assisted breeding and selection, it is desirable to populate maps of the genome with an abundance of transferrable molecular markers such as microsatellites (SSRs) and gene-specific markers. Exploiting the recent release of the genome sequence of the diploid F. vesca, and the publication of an extensive number of polymorphic SSR markers for the genus Fragaria, we have extended the linkage map of the ‘Redgauntlet’ × ‘Hapil’ (RG × H) mapping population to include a further 330 loci, generated from 160 primer pairs, to create a linkage map for F. × ananassa containing 549 loci, 490 of which are transferrable SSR or gene-specific markers. The map covers 2140.3 cM in the expected 28 linkage groups for an integrated map (where one group is composed of two separate male and female maps), which represents an estimated 91% of the cultivated strawberry genome. Despite the relative saturation of the linkage map on the majority of linkage groups, regions of apparent extensive homozygosity were identified in the genomes of ‘Redgauntlet’ and ‘Hapil’ which may be indicative of allele fixation during the breeding and selection of modern F. × ananassa cultivars. The genomes of the octoploid and diploid Fragaria are largely collinear, but through comparison of mapped markers on the RG × H linkage map to their positions on the genome sequence of F. vesca, a number of inversions were identified that may have occurred before the polyploidisation event that led to the evolution of the modern octoploid strawberry species.  相似文献   

16.
Sharka disease, caused by the plum pox virus (PPV), is one of the major limiting factors for stone fruit crops in Europe and America. In particular, apricot is severely affected suffering significant fruit losses. Thus, PPV resistance is a trait of great interest for the apricot breeding programs currently in progress. In this work, two apricot maps, earlier constructed with the F1 ‘Goldrich × Currot’ (G×C) and the F2 ‘Lito × Lito’-98 (L×L-98) populations, have been improved including 43 and 37 new simple sequence repeat (SSR) loci, respectively, to facilitate PPV resistance trait mapping. Screening of PPV resistance on the segregating populations classified seedling phenotypes into resistant or susceptible. A non-parametric mapping method, based on the Kruskal–Wallis (KW) rank sum test, was initially used to score marker–trait association, and results were confirmed by interval mapping. Contrary to the putative digenic model inferred from the phenotypic segregations, all significant markers for the KW statistic (P < 0.005) mapped in a unique region of ~21.0 and ~20.3 cM located on the upper part of the G1 linkage group in ‘G×C’ and ‘L×L-98’ maps, respectively. According to the data, PPV resistance is suggested to be controlled by at least one major dominant locus. The association between three SSRs distributed within this region and the PPV resistance was tested in two additional populations (‘Goldrich × Canino’ and ‘Lito × Lito’-00) and breeding program parents. The marker ssrPaCITA5 showed the highest KW value (P < 0.005) in all cases, pointing out its usefulness in marker-assisted selection. Electronic Supplementary Material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

17.
Recombinant chromosome substitution lines (RCSLs) were developed in BC3 generation to introduce segments of a wild barley strain ‘H602’ (Hordeum vulgare ssp. spontaneum) into a barley cultivar ‘Haruna Nijo’ (H. vulgare ssp. vulgare) genetic background. One hundred thirty four RCSLs were genotyped by 25 SSR and 60 EST markers, which were localized on a linkage map of doubled haploid lines (DHLs) derived from the same cross combination. Graphical genotyping revealed that the observed average substitution ratio of H602 segment (12.9%) agreed with the expected substitution ratio (12.5%), and a minimum set of 19 RCSLs represented the entire H602 genome. Phenotypes of five qualitative and nine quantitative traits were scored in both the RCSLs and DHLs. Five qualitative traits were localized as morphological markers on the linkage map of the DHLs, and these molecular markers were aligned on the respective chromosomal regions in the RCSLs. Simple and composite interval mapping procedures detected a total of 18 and 24 QTLs for nine qualitative traits on the RCSLs and DHLs, respectively. Several QTLs were localized at coincident or very close regions on both linkage maps. In spite of general inferior agronomic performances in wild barley, several H602 QTL alleles showed agronomically positive effects. These RCSLs should contribute to substitution of favorable alleles from wild barley into cultivated barley. These RCSLs are also available as sources of near isogenic lines, with which we can apply advanced genetic analysis methods such as isolation of QTLs and detection of epistatic interactions among QTLs.  相似文献   

18.
Cotton is the world’s leading cash crop, but it lags behind other major crops for marker-assisted breeding due to limited polymorphisms and a genetic bottleneck through historic domestication. This underlies a need for characterization, tagging, and utilization of existing natural polymorphisms in cotton germplasm collections. Here we report genetic diversity, population characteristics, the extent of linkage disequilibrium (LD), and association mapping of fiber quality traits using 202 microsatellite marker primer pairs in 335 G. hirsutum germplasm grown in two diverse environments, Uzbekistan and Mexico. At the significance threshold (r 2 ≥ 0.1), a genome-wide average of LD extended up to genetic distance of 25 cM in assayed cotton variety accessions. Genome wide LD at r 2 ≥ 0.2 was reduced to ~5–6 cM, providing evidence of the potential for association mapping of agronomically important traits in cotton. Results suggest linkage, selection, inbreeding, population stratification, and genetic drift as the potential LD-generating factors in cotton. In two environments, an average of ~20 SSR markers was associated with each main fiber quality traits using a unified mixed liner model (MLM) incorporating population structure and kinship. These MLM-derived significant associations were confirmed in general linear model and structured association test, accounting for population structure and permutation-based multiple testing. Several common markers, showing the significant associations in both Uzbekistan and Mexican environments, were determined. Between 7 and 43% of the MLM-derived significant associations were supported by a minimum Bayes factor at ‘moderate to strong’ and ‘strong to very strong’ evidence levels, suggesting their usefulness for marker-assisted breeding programs and overall effectiveness of association mapping using cotton germplasm resources. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

19.
Solanum tuberosum L. DNA sequences containing simple sequence repeat (SSR) motifs were extracted from the EMBL database, cDNA and selectively enriched small-insert DNA libraries. Enrichment was achieved using either triplex affinity capture or single-strand hybridisation selection. One hundred and twelve primer pairs which successfully amplified products of the correct size from potato DNA were ultimately designed and synthesised. Ninety-eight of these revealed length polymorphisms in a panel of four diploid and two tetraploid clones, in agreement with the high information content of this class of markers which has been found in other species. All of the markers were assigned a quality score of 1–5 based on their potential usefulness. Eighty-nine loci from 65 of the primer pairs were located on two genetic linkage maps of potato by segregation analysis of the amplified alleles. Fifty-two of the SSRs were clearly single locus. The maps were aligned using 23 SSR primer pairs and 13 RFLP loci mapped in both populations. The markers described constitute a class which should replace Restriction Fragment Length Polymorphisms (RFLP) as the markers of choice for future genetic studies in potato. The sequences of the primers, together with other information on these markers are provided. Received: 12 January 1998 / Accepted: 25 March 1998  相似文献   

20.
A number of useful marker-trait associations have been reported for wheat. However the number of publications detailing the integrated and pragmatic use of molecular markers in wheat breeding is limited. A previous report by some of these authors showed how marker-assisted selection could increase the genetic gain and economic efficiency of a specific breeding strategy. Here, we present a practical validation of that study. The target of this breeding strategy was to produce wheat lines derived from an elite Australian cultivar ‘Stylet’, with superior dough properties and durable rust resistance donated from ‘Annuello’. Molecular markers were used to screen a BC1F1 population produced from a cross between the recurrent parent ‘Stylet’ and the donor parent ‘Annuello’ for the presence of rust resistance genes Lr34/Yr18 and Lr46/Yr29. Following this, marker-assisted selection was applied to haploid plants, prior to chromosome doubling with cochicine, for the rust resistance genes Lr24/Sr24, Lr34/Yr18, height reducing genes, and for the grain protein genes Glu-D1 and Glu-A3. In general, results from this study agreed with those of the simulation study. Genetic improvement for rust resistance was greatest when marker selection was applied on BC1F1 individuals. Introgression of both the Lr34/Yr18 and Lr46/Yr29 loci into the susceptible recurrent parent background resulted in substantial improvement in leaf rust and stripe rust resistance levels. Selection for favourable glutenin alleles significantly improved dough resistance and dough extensibility. Marker-assisted selection for improved grain yield, through the selection of recurrent parent genome using anonymous markers, only marginally improved grain yield at one of the five sites used for grain yield assessment. In summary, the integration of marker-assisted selection for specific target genes, particularly at the early stages of a breeding programme, is likely to substantially increase genetic improvement in wheat.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号