首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
The nucleotide sequence of initiator tRNA from Mycobacterium smegmatis was determined to be pCGCGGGGUGGAGCAGCUCGGDAGCUCGCUGGGCUCAUAACCCAGAGm7GUCG CAGGU psi CGm1AAUCCUGUCCCCGCUACCAOH . The nucleotide sequence of Mycobacterium initiator tRNA was found to be the same as that of Streptomyces initiator tRNA, except that G46 and A57 were replaced by m7G46 and G57 , respectively. The striking feature of Mycobacterium initiator tRNA is the absence of ribothymidine at residue 54, and the presence of 1-methyladenosine at residue 58 which makes the sequence of this tRNA similar to that of eukaryotic initiator tRNA.  相似文献   

4.
The nucleotide sequence of cytoplasmic phenylalanine tRNA from Euglena gracilis has been elucidated using procedures described previously for the corresponding chloroplastic tRNA [Cell, 9, 717 (1976)]. The sequence is: pG-C-C-G-A-C-U-U-A-m(2)G-C-U-Cm-A-G-D-D-G-G-G-A-G-A-G-C-m(2)2G-psi-psi-A-G-A-Cm -U-Gm-A-A-Y-A-psi-C-U-A-A-A-G-m(7)G-U-C-*C-C-U-G-G-T-psi-C-G-m(1)A-U-C-C-C-G-G- G-A-G-psi-C-G-G-C-A-C-C-A. Like other tRNA Phes thus far sequenced, this tRNA has a chain length of 76 nucleotides. The sequence of E. gracilis cytoplasmic tRNA Phe is quite different (27 nucleotides out of 76 different) from that of the corresponding chloroplastic tRNA but is surprisingly similar (72 out of 76 nucleotides identical) to that of tRNA Phe from mammalian cytoplasm. This extent of sequence homology even exceeds that found between E. gracilis and wheat germ cytoplasmic tRNA Phe. These findings raise interesting questions on the evolution of tRNAs and the taxonomy of Euglena.  相似文献   

5.
The phenylalanine tRNA from the cytoplasm of Neurospora crassa has been purified and sequenced. The sequence is: pGCGGGUUUAm2GCUCA (N) GDDGGGAGAGCm22GpsiCAGACmUGmAAYApsim5CUGAAGm7GDm5CGUGUGTpsiCGm1AUCCACACAAACCGCACCAOH. Both in the nature of modified nucleotides which are present in this tRNA and in the overall sequence, this tRNA resembles more closely phenylalanine tRNAs of eukaryotic cytoplasm than those of prokaryotes. The sequence of this tRNA differs from those of the corresponding tRNAs of wheat germ and yeast by only 6 and 7 nucleotides respectively out of 76 nucleotides.U  相似文献   

6.
Initiator methionine tRNA from the cytoplasm of Neurospora crassa has been purified and sequenced. The sequence is: pAGCUGCAUm1GGCGCAGCGGAAGCGCM22GCY*GGGCUCAUt6AACCCGGAGm7GU (or D) - CACUCGAUCGm1AAACGAG*UUGCAGCUACCAOH. Similar to initiator tRNAs from the cytoplasm of other eukaryotes, this tRNA also contains the sequence -AUCG- instead of the usual -TphiCG (or A)- found in loop IV of other tRNAs. The sequence of the N. crassa cytoplasmic initiator tRNA is quite different from that of the corresponding mitochondrial initiator tRNA. Comparison of the sequence of N. crassa cytoplasmic initiator tRNA to those of yeast, wheat germ and vertebrate cytoplasmic initiator tRNA indicates that the sequences of the two fungal tRNAs are no more similar to each other than they are to those of other initiator tRNAs.  相似文献   

7.
8.
Mitochondrial DNA (mtDNA) regions corresponding to two major tRNA gene clusters were amplified and sequenced for the Japanese pit viper, himehabu. In one of these clusters, which in most vertebrates characterized to date contains three tightly connected genes for tRNA(Ile), and tRNA(Gln), and tRNA(Met), a sequence of approximately 1.3 kb was found to be inserted between the genes for tRNA(Ile) and tRNA(Gln). The insert consists of a control-region-like sequence possessing some conserved sequence blocks, and short flanking sequences which may be folded into tRNA(Pro), tRNA(Phe), and tRNA(Leu) genes. Several other snakes belonging to different families were also found to possess a control-region-like sequence and tRNA(Leu) gene between the tRNA(Ile)and tRNA(Gln) genes. We also sequenced a region surrounded by genes for cytochrome b and 12S rRNA, where the control region and genes for tRNA(Pro) and tRNA(Phe) are normally located in the mtDNAs of most vertebrates. In this region of three examined snakes, a control-region- like sequence exists that is almost completely identical to the one found between the tRNA(Ile) and tRNA(Gln) genes. The mtDNAs of these snakes thus possess two nearly identical control-region-like sequences which are otherwise divergent to a large extent between the species. These results suggest that the duplicate state of the control-region- like sequences has long persisted in snake mtDNAs, possibly since the original insertion of the control-region-like sequence and tRNA(Leu) gene into the tRNA gene cluster, which occurred in the early stage of the divergence of snakes. It is also suggested that the duplicated control-region-like sequences at two distant locations of mtDNA have evolved concertedly by a mechanism such as frequent gene conversion. The secondary structures of the determined tRNA genes point to the operation of simplification pressure on the T psi C arm of snake mitochondrial tRNAs.   相似文献   

9.
N Nakajima  H Ozeki  Y Shimura 《Cell》1981,23(1):239-249
  相似文献   

10.
The nucleotide sequence of the gene coding for tRNA(Lys) and its flanking regions from the rapeseed mitochondrial genome are presented and compared with other known tRNA(Lys) genes from plant mitochondria. This tRNA sequence can be folded into the standard cloverleaf structure model. Also, this tRNA sequence shows less similarity with its chloroplast counterparts and therefore appears to be 'native' mitochondrial tRNA.  相似文献   

11.
A Schn  A Bck  G Ott  M Sprinzl    D Sll 《Nucleic acids research》1989,17(18):7159-7165
Selenocysteine is cotranslationally incorporated into selenoproteins in a unique pathway involving tRNA mediated suppression of a UGA nonsense codon (1-3). The DNA sequence of the gene for this suppressor tRNA from Escherichia coli predicts unusual features of the gene product (4). We determined the sequence of this serine tRNA (tRNA(UCASer]. It is the longest tRNA (95 nt) known to date with an acceptor stem of 8 base pairs and lacks some of the 'invariant' nucleotides found in other tRNAs. It is the first E. coli tRNA that contains the hypermodified nucleotide i6A, adjacent to the UGA-recognizing anticodon UCA. The implications of the unusual structure and modification of this tRNA on recognition by seryl-tRNA synthetase, by tRNA modifying enzymes, and on codon recognition are discussed.  相似文献   

12.
The nucleotide sequence of initiator tRNA, tRNAfMet, from vitellogenic oocytes of Xenopus laevis was determined. The sequence was deduced from analysis of all T1 and pancreatic oligonucleotides and comparison with the sequence of initiator tRNA from other animal species. At least 80% of all initiator tRNA molecules from oocytes have the same nucleotide sequence. This means that most and probably all initiator tRNA genes which are active in oocytes are identical to one another. No structural difference was observed between liver and oocyte initiator tRNAs. Initiator tRNA from X. laevis has the same nucleotide sequence as initiator tRNA from several species of mammals. The genes coding for this RNA have therefore remained unchanged in the mammalian and amphibian lines for at least 300000000 years.  相似文献   

13.
The total primary structure of cytoplasmic initiator tRNA from Tetrahymena thermophila mating type IV, was determined by post labeling techniques. The sequence is pa-G-C-A-G-G-G-U-m1G-G-C-G-A-A-A-D-Gm-G-A-A-U-C-G-C-G-U-Psi-G-G-G-C-U-C-A-U-t6A -A-C-Psi-C-A-A-A-A-m7G-U-m5C-A-G-A-G-G-A-Psi-C-G-m1A-A-A-C-C-U-C-U-C-U-C-U-G-C- U-A-C-C-AOH. The nucleotide residue in the position next to the 5'-end of the anticodon of this tRNA (residue No. 33) is uridine instead of cytidine, which has been found in cytoplasmic initiator tRNAs from multicellular eukaryotic organisms. The sequence of three consecutive G-C base pairs in the anticodon stem common to all other cytoplasmic initiator tRNAs is disrupted in this tRNA; namely, the cytidine at residue 40 in this region is replaced by pseudouridine in Tetrahymena initiator tRNA.  相似文献   

14.
15.
Nucleotide sequence and transcription of a gene encoding human tRNAGlyCCC   总被引:1,自引:0,他引:1  
  相似文献   

16.
17.
Two restriction enzyme fragments containing yeast mitochondrial tRNA genes have been characterized by DNA sequence analysis. One of these fragments is 320 base pairs long and contains a tRNA Ser gene. The corresponding tRNA SER was isolated from yeast mitochondria and its nucleotide sequence also was determined. This mitochondrial tRNA is 90 nucleotides in length, has a G + C content of 38%, and has UGA as the anticodon. A portion of a 680-base-pair DNA fragment containing a tRNA Phe gene was also sequenced. The portion of this gene which codes for the mature tRNA is 75 base pairs in length, has a G + C content of 33%, and contains the anticodon GAA. Neither gene contains an intervening sequence or codes for the 3' CCA terminus. Both are surrounded by regions of more than 90% A + T. The significance of these sequences is discussed.  相似文献   

18.
We have constructed a plasmid expressing E. coli M1 RNA, the catalytic RNA subunit of ribonuclease P, under the control of a phage T7 promoter. The active M1 RNA species synthesized in vitro by T7 RNA polymerase from this vector was reacted with the tRNA(Gln) - tRNA(Leu) precursor RNA (Band K) encoded by phage T4. Only the tRNA(Leu) moiety of this dimeric precursor RNA contains the 3' terminal C-C-A sequence common to all tRNAs. We observed that protein-free M1 RNA was capable of processing the precursor RNA at the 5' ends of both tRNA tRNA sequences. The rate of cleavage of the tRNA(Gln) sequence was more strongly dependent on [Mg2+] than that of tRNA(Leu), increasing severalfold between 100 and 500 mM Mg2+, conditions under which the rate of cleavage at the tRNA(Leu) sequence was constant.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号