首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
To facilitate purification and structural characterization, the CB2 cannabinoid receptor is expressed in methylotrophic yeast Pichia pastoris. The expression plasmids were constructed in which the CB2 gene is under the control of the highly inducible promoter of P. pastoris alcohol oxidase 1 gene. A c-myc epitope and a hexahistidine tag were introduced at the C-terminal of the CB2 to permit easy detection and purification. In membrane preparations of CB2 gene transformed yeast cells, Western blot analysis detected the expression of CB2 proteins. Radioligand binding assays demonstrated that the CB2 receptors expressed in P. pastoris have a pharmacological profile similar to that of the receptors expressed in mammalian systems. Furthermore, the epitope-tagged receptor was purified by metal chelating chromatography and the purified CB2 preparations were subjected to digestion by trypsin. MALDI/TOF mass spectrometry analysis of the peptides extracted from tryptic digestions detected 14 peptide fragments derived from the CB2 receptor. ESI mass spectrometry was used to sequence one of these peptide fragments, thus, further confirming the identity of the purified receptor. In conclusion, these data demonstrated for the first time that epitope-tagged, functional CB2 cannabinoid receptor can be expressed in P. pastoris for purification.  相似文献   

5.
To facilitate purification and structural characterization, the CB2 cannabinoid receptor is expressed in methylotrophic yeast Pichia pastoris. The expression plasmids were constructed in which the CB2 gene is under the control of the highly inducible promoter of P. pastoris alcohol oxidase 1 gene. A c-myc epitope and a hexahistidine tag were introduced at the C-terminal of the CB2 to permit easy detection and purification. In membrane preparations of CB2 gene transformed yeast cells, Western blot analysis detected the expression of CB2 proteins. Radioligand binding assays demonstrated that the CB2 receptors expressed in P. pastoris have a pharmacological profile similar to that of the receptors expressed in mammalian systems. Furthermore, the epitope-tagged receptor was purified by metal chelating chromatography and the purified CB2 preparations were subjected to digestion by trypsin. MALDI/TOF mass spectrometry analysis of the peptides extracted from tryptic digestions detected 14 peptide fragments derived from the CB2 receptor. ESI mass spectrometry was used to sequence one of these peptide fragments, thus, further confirming the identity of the purified receptor. In conclusion, these data demonstrated for the first time that epitope-tagged, functional CB2 cannabinoid receptor can be expressed in P. pastoris for purification.  相似文献   

6.
7.
Endogenous cannabinoids and type-1 cannabinoid receptor (CB1) are widely produced and distributed in the central nervous system (CNS) and peripheral nerves in mammals. In addition, the detection of endocannabinoids and corresponding receptors in non nervous peripheral tissues indicates an involvement of the system in the control of a wide range of physiological activities, including reproduction. Recently, the existence of CB1 was also observed in lower vertebrates and in urochordate suggesting that the endocannabinoid system is phylogenetically conserved. Using RT-PCR, CB1 mRNA expression profiles were characterized in a wide range of tissues of the anuran amphibian, the frog, Rana esculenta. Besides a strong expression in the CNS, CB1 was also present in testis, kidney, liver, ovary, muscle, heart, spleen, and pituitary. The CB1 expression pattern has been characterized in both testis and CNS during the annual sexual cycle. In testis, CB1 is poorly expressed during the winter stasis of the spermatogenesis rising during the breeding season and resumption period. An expression profile mismatching to that observed in testis was detected in whole-brain preparations during the sexual cycle; in particular in the diencephalon, the encephalic area mainly involved in the control of reproductive functions. Furthermore, fluctuations inside isolated encephalic areas and spinal cord were observed all over the reproductive cycle. In conclusion, CB1 receptor is expressed in R. esculenta CNS and testis. As far as the gonad it concerns, our results suggest the involvement of the endocannabinoids in the control of reproductive function.  相似文献   

8.
Vessey KA  Fletcher EL 《PloS one》2012,7(1):e29990
The P2X7 receptor (P2X7-R) is expressed in the retina and brain and has been implicated in neurodegenerative diseases. However, whether it is expressed by neurons and plays a role as a neurotransmitter receptor has been the subject of controversy. In this study, we first show that the novel vesicular transporter for ATP, VNUT, is expressed in the retina, verifying the presence of the molecular machinery for ATP to act as neurotransmitter at P2X7-Rs. Secondly we show the presence of P2X7-R mRNA and protein in the retina and cortex and absence of the full length variant 1 of the receptor in the P2X7-R knock out (P2X7-KO) mouse. The role of the P2X7-R in neuronal function of the retina was assessed by comparing the electroretinogram response of P2X7-KO with WT mice. The rod photoreceptor response was found to be similar, while both rod and cone pathway post-photoreceptor responses were significantly larger in P2X7-KO mice. This suggests that activation of P2X7-Rs modulates output of second order retinal neurons. In line with this finding, P2X7-Rs were found in the outer plexiform layer and on inner retinal cell classes, including horizontal, amacrine and ganglion cells. The receptor co-localized with conventional synapses in the IPL and was expressed on amacrine cells post-synaptic to rod bipolar ribbon synapses. In view of the changes in visual function in the P2X7-KO mouse and the immunocytochemical location of the receptor in the normal retina, it is likely the P2X7-R provides excitatory input to photoreceptor terminals or to inhibitory cells that shape both the rod and cone pathway response.  相似文献   

9.
The human estrogen receptor (ER) alpha gene is transcribed from multiple promoters, generating mRNA isoforms with unique 5' ends in the untranslated region. In the present study, alternative promoters were shown to regulate the ERalpha gene expression in different neuronal populations of the human brain. By using in situ hybridization histochemistry, the A and B promoters, but not the C promoter, in the ERalpha gene were found to be active in the human forebrain. The mRNA isoform transcribed from the A promoter was expressed in low levels in most of the brain areas where ERalpha mRNA was present. In contrast, the B promoter mRNA isoform was more restricted, localized predominantly in high-expressing ERalpha mRNA regions. The gross anatomical distribution of the different mRNA isoforms analyzed with RT-PCR generally supported the results obtained by the in situ hybridization. Estrogen is known to modulate many different brain functions, such as neuroendocrine events associated with reproduction, mood, and cognition, likely to be mediated by different neuronal populations. Thus, the current findings of alternative ERalpha promoter expression in distinct neuronal populations suggest that multiple promoter usage is a possible mechanism to achieve differentiated regulation of the ERalpha expression, dependent on the cell phenotype and consequently the functions mediated by the specific neuron.  相似文献   

10.
11.
The myocardial endocannabinoid system has been linked to stress response and cardioprotection. In chronic heart failure (CHF), protective CB2 receptors are markedly up-regulated while CB1 receptors are slightly down-regulated. We here provide evidence that myocardial CB receptors are subject to microRNA regulation. By a combined computational and experimental approach we show that CB1 receptors are regulated by miR-494, and CB2 receptors are targeted by miR-665. Moreover, we demonstrate that in CHF, miR-665 expression is significantly decreased while miR-494 is slightly increased, which is concordant with the previously reported alterations of CB receptors. These results suggest that in CHF, altered expression of specific miRNAs may contribute to a compensatory response of the diseased myocardium.  相似文献   

12.
For the purpose of purification and structural characterization, the CB1 cannabinoid receptors are expressed in methylotrophic yeast Pichia pastoris. The expression plasmid was constructed in which the CB1 gene is under the control of the highly inducible promoter of P. pastoris alcohol oxidase I gene. To facilitate easy detection and purification, a FLAG tag was introduced at the N-terminal, a c-myc epitope and a hexahistidine tag were introduced at the C-terminal of the CB1. In membrane preparations of CB1 gene transformed yeast cells, Western blot analysis detected the expression of CB1 proteins. Radioligand binding assays demonstrated that the tagged CB1 receptors expressed in P. pastoris have a pharmacological profile similar to that of the untagged CB1 receptors expressed in mammalian systems. Furthermore, the tagged CB1 receptors were purified by anti-FLAG M2 affinity chromatography and the identity of the purified CB1 receptor proteins was confirmed by Western blot analysis. MALDI/TOF mass spectrometry analysis of the peptides extracted from tryptic digestions of purified CB1 preparations detected 17 peptide fragments derived from the CB1, thus further confirming the identity of the purified receptor. In conclusion, these data demonstrated for the first time that epitope tagged, functional CB1 cannabinoid receptors can be expressed in P. pastoris for purification and mass spectrometry characterization.  相似文献   

13.
In neuronal signalling mediated by the endocannabinoid 2-arachidonoylglycerol, both synthetic and inactivating enzymes operate within close proximity to the G(i/o)-coupled pre-synaptic CB(1) receptors, thus allowing for rapid onset and transient duration of this lipid modulator. In rat brain, 2-arachidonoylglycerol is inactivated mainly via hydrolysis by serine hydrolase inhibitor-sensitive monoacylglycerol lipase activity. We show in this study that comprehensive pharmacological elimination of this activity in brain cryosections by methyl arachidonylfluorophosphonate or hexadecylsulphonyl fluoride results in endocannabinoid-mediated CB(1) receptor activity, which can be visualized by functional autoradiography. URB597, a specific inhibitor of anandamide hydrolysis proved ineffective. TLC indicated that the bioactivity resided in 2-arachidonoylglycerol-containing fraction and gas chromatography-mass spectroscopy detected elevated levels of monoacylglycerols, including 2-arachidonoylglycerol in this fraction. Although two diacylglycerol lipase inhibitors, tetrahydrolipstatin (THL) and RHC80267, blocked the bulk of 2-arachidonoylglycerol accumulation in methyl arachidonylfluorophosphonate-treated sections, only THL reversed the endocannabinoid-dependent CB(1) receptor activity. Further studies indicated that at the used concentrations, THL rather specifically antagonized the CB(1) receptor. These findings confirm that in brain sections there is preservation of enzymatic pathways regulating the production of endogenous receptor ligands. Furthermore, the presently described methodology may serve as an elegant and intuitive approach to identify novel membrane-derived lipid modulators operating in the CNS.  相似文献   

14.
15.
The endocannabinoid system is known to regulate neural progenitor (NP) cell proliferation and neurogenesis. In particular, CB(2) cannabinoid receptors have been shown to promote NP proliferation. As CB(2) receptors are not expressed in differentiated neurons, CB(2)-selective agonists are promising candidates to manipulate NP proliferation and indirectly neurogenesis by overcoming the undesired psychoactive effects of neuronal CB(1) cannabinoid receptor activation. Here, by using NP cells, brain organotypic cultures, and in vivo animal models, we investigated the signal transduction mechanism involved in CB(2) receptor-induced NP cell proliferation and neurogenesis. Exposure of hippocampal HiB5 NP cells to the CB(2) receptor-selective agonist HU-308 led to the activation of the phosphatidylinositol 3-kinase (PI3K)/Akt/mammalian target of rapamycin complex 1 (mTORC1) pathway, which, by inhibiting its downstream target p27Kip1, induced NP proliferation. Experiments conducted with the CB(2) receptor-selective antagonist SR144528, inhibitors of the PI3K/Akt/mTORC1 axis, and CB(2) receptor transient-transfection vector further supported that CB(2) receptors control NP cell proliferation via activation of mTORC1 signaling. Likewise, CB(2) receptor engagement induced cell proliferation in an mTORC1-dependent manner both in embryonic cortical slices and in adult hippocampal NPs. Thus, HU-308 increased ribosomal protein S6 phosphorylation and 5-bromo-2'-deoxyuridine incorporation in wild-type but not CB(2) receptor-deficient NPs of the mouse subgranular zone. Moreover, adult hippocampal NP proliferation induced by HU-308 and excitotoxicity was blocked by the mTORC1 inhibitor rapamycin. Altogether, these findings provide a mechanism of action and a rationale for the use of nonpsychotomimetic CB(2) receptor-selective ligands as a novel strategy for the control of NP cell proliferation and neurogenesis.  相似文献   

16.
Elphick MR 《Gene》2007,399(1):65-71
A gene encoding an ortholog of vertebrate CB(1)/CB(2) cannabinoid receptors was recently identified in the urochordate Ciona intestinalis (CiCBR; [Elphick, M.R., Satou, Y., Satoh, N., 2003. The invertebrate ancestry of endocannabinoid signalling: an orthologue of vertebrate cannabinoid receptors in the urochordate Ciona intestinalis. Gene 302, 95-101.]). Here a cannabinoid receptor ortholog (BfCBR) has been identified in the cephalochordate Branchiostoma floridae. BfCBR is encoded by a single exon and is 410 amino acid residue protein that shares 28% sequence identity with CiCBR and 23% sequence identity with human CB(1) and human CB(2). The discovery of BfCBR and CiCBR and the absence of cannabinoid receptor orthologs in non-chordate invertebrates indicate that CB(1)/CB(2)-like cannabinoid receptors originated in an invertebrate chordate ancestor of urochordates, cephalochordates and vertebrates. Furthermore, analysis of the relationship of BfCBR and CiCBR with vertebrate CB(1) and CB(2) receptors indicates that the gene/genome duplication that gave rise to CB(1) and CB(2) receptors occurred in the vertebrate lineage. Identification of BfCBR, in addition to CiCBR, paves the way for comparative analysis of the expression and functions of these proteins in Branchiostoma and Ciona, respectively, providing an insight into the ancestral functions of cannabinoid receptors in invertebrate chordates prior to the emergence of CB(1) and CB(2) receptors in vertebrates.  相似文献   

17.
A recent and surprising body of research has linked changes in immune function to biologic and therapeutic targeting of cannabinoid receptors, which prototypically respond to delta-9 tetrahydrocannabinol. The peripheral cannabinoid receptor CB2 is highly expressed in immune cell types (macrophages, dendritic cells, and B cells), and pharmacologically alters their cytokine production and responsiveness. Accordingly, cannabinoid agonists can powerfully alter susceptibility to certain microbial infections, atherosclerosis, and cancer immunotherapy. What is unknown is the physiologic role of natural levels of endocannabinoids and their receptors in normal immune homeostasis. Gαi2−/− mice are deficient in the formation of certain B and T cell subsets and are susceptible to immune dysregulation, notably developing inflammatory bowel disease. A key issue is the identity of the Gi-coupled receptors relevant to this Gαi2-signaling pathway. We find that mice deficient in CB2, the Gi-coupled peripheral endocannabinoid receptor, have profound deficiencies in splenic marginal zone, peritoneal B1a cells, splenic memory CD4+ T cells, and intestinal natural killer cells and natural killer T cells. These findings partially phenocopy and extend the lymphocyte developmental disorder associated with the Gαi2−/− genotype, and suggest that the endocannabinoid system is required for the formation of T and B cell subsets involved in immune homeostasis. This noncompensatable requirement for physiologic function of the endocannabinoid system is novel. Because levels of endocannabinoids are highly restricted microanatomically, local regulation of their production and receptor expression offers a new principle for regional immune homeostasis and disease susceptibility, and extends and refines the rationale for CB2-targeted immunotherapy in immune and inflammatory diseases.  相似文献   

18.
The rat peripheral cannabinoid receptor (rCB2) was cloned from a Sprague-Dawley rat spleen cDNA library and when translated, encodes a protein of 410 amino acids. Alignment of rCB2 with mouse (mCB2) and human (hCB2) peripheral cannabinoid receptors reveals a high degree of homology except in the carboxy terminus where rCB2 is 50 and 63 residues longer than hCB2 and mCB2, respectively. PCR screening and sequencing of rat genomic DNA showed that rCB2 is encoded by three exons interrupted by two introns, one of which is polymorphic and contains a 209 base pair B2 (SINE) element. By Northern hybridization and ribonuclease protection assay (RPA), rCB2 mRNA was detected in rat spleen, testis, thymus and lung but not in rat brain, heart, kidney or liver. Like hCB2 and mCB2 receptors, rCB2 activates mitogen-activated protein kinase when it is stably expressed in Chinese Hamster Ovary (CHO) cells. The importance of the carboxy terminus in regulating CB2 receptor desensitization and internalization is well-established. Thus, the profound differences identified in this region of the CB2 receptor between species mandates caution when extrapolating experimental results from non-human models to the effects of chronic CB2 receptor stimulation in humans.  相似文献   

19.
The cannabinoid receptor 1 (CB1), a member of the class A G protein-coupled receptor family, is expressed in brain tissue where agonist stimulation primarily activates the pertussis toxin-sensitive inhibitory G protein (G(i)). Ligands such as CP55940 ((1R,3R,4R)-3-[2-hydroxy-4-(1,1-dimethylheptyl)phenyl]-4-(3- hydroxypropyl)cyclohexan-1-ol) and Δ(9)-tetrahydrocannabinol are orthosteric agonists for the receptor, bind the conventional binding pocket, and trigger G(i)-mediated effects including inhibition of adenylate cyclase. ORG27569 (5-chloro-3-ethyl-1H-indole-2-carboxylic acid [2-(4-piperidin-1-yl-phenyl)ethyl]amide) has been identified as an allosteric modulator that displays positive cooperativity for CP55940 binding to CB1 yet acts as an antagonist of G protein coupling. To examine this apparent conundrum, we used the wild-type CB1 and two mutants, T210A and T210I (D'Antona, A. M., Ahn, K. H., and Kendall, D. A. (2006) Biochemistry 45, 5606-5617), which collectively cover a spectrum of receptor states from inactive to partially active to more fully constitutively active. Using these receptors, we demonstrated that ORG27569 induces a CB1 receptor state that is characterized by enhanced agonist affinity and decreased inverse agonist affinity consistent with an active conformation. Also consistent with this conformation, the impact of ORG27569 binding was most dramatic on the inactive T210A receptor and less pronounced on the already active T210I receptor. Although ORG27569 antagonized CP55940-induced guanosine 5'-3-O-(thio)triphosphate binding, which is indicative of G protein coupling inhibition in a concentration-dependent manner, the ORG27569-induced conformational change of the CB1 receptor led to cellular internalization and downstream activation of ERK signaling, providing the first case of allosteric ligand-biased signaling via CB1. ORG27569-induced ERK phosphorylation persisted even after pertussis toxin treatment to abrogate G(i) and occurs in HEK293 and neuronal cells.  相似文献   

20.
A series of N-benzyl-7-azaindolequinuclidinone (7-AIQD) analogs have been synthesized and evaluated for affinity toward CB1 and CB2 cannabinoid receptors and identified as a novel class of cannabinoid receptor ligands. Structure–activity relationship (SAR) studies indicate that 7-AIQD analogs are dual CB1/CB2 receptor ligands exhibiting high potency with somewhat greater selectivity towards CB2 receptors compared to the previously reported indolequinuclidinone (IQD) analogs. Initial binding assays showed that 7-AIQD analogs 8b, 8d, 8f, 8g and 9b (1 μM) produced more that 50% displacement of the CB1/CB2 non-selective agonist CP-55,940 (0.1 nM). Furthermore, Ki values determined from full competition binding curves showed that analogs 8a, 8b and 8g exhibit high affinity (110, 115 and 23.7 nM, respectively) and moderate selectivity (26.3, 6.1 and 9.2-fold, respectively) for CB2 relative to CB1 receptors. Functional studies examining modulation of G-protein activity demonstrated that 8a acts as a neutral antagonist at CB1 and CB2 receptors, while 8b exhibits inverse agonist activity at these receptors. Analogs 8f and 8g exhibit different intrinsic activities, depending on the receptor examined. Molecular docking and binding free energy calculations for the most active compounds (8a, 8b, 8f, and 8g) were performed to better understand the CB2 receptor-selective mechanism at the atomic level. Compound 8g exhibited the highest predicted binding affinity at both CB1 and CB2 receptors, and all four compounds were shown to have higher predicted binding affinities with the CB2 receptor compared to their corresponding binding affinities with the CB1 receptor. Further structural optimization of 7-AIQD analogs may lead to the identification of potential clinical agents.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号