共查询到20条相似文献,搜索用时 15 毫秒
1.
《Bioorganic & medicinal chemistry letters》2020,30(22):127501
A series of N-benzyl-7-azaindolequinuclidinone (7-AIQD) analogs have been synthesized and evaluated for affinity toward CB1 and CB2 cannabinoid receptors and identified as a novel class of cannabinoid receptor ligands. Structure–activity relationship (SAR) studies indicate that 7-AIQD analogs are dual CB1/CB2 receptor ligands exhibiting high potency with somewhat greater selectivity towards CB2 receptors compared to the previously reported indolequinuclidinone (IQD) analogs. Initial binding assays showed that 7-AIQD analogs 8b, 8d, 8f, 8g and 9b (1 μM) produced more that 50% displacement of the CB1/CB2 non-selective agonist CP-55,940 (0.1 nM). Furthermore, Ki values determined from full competition binding curves showed that analogs 8a, 8b and 8g exhibit high affinity (110, 115 and 23.7 nM, respectively) and moderate selectivity (26.3, 6.1 and 9.2-fold, respectively) for CB2 relative to CB1 receptors. Functional studies examining modulation of G-protein activity demonstrated that 8a acts as a neutral antagonist at CB1 and CB2 receptors, while 8b exhibits inverse agonist activity at these receptors. Analogs 8f and 8g exhibit different intrinsic activities, depending on the receptor examined. Molecular docking and binding free energy calculations for the most active compounds (8a, 8b, 8f, and 8g) were performed to better understand the CB2 receptor-selective mechanism at the atomic level. Compound 8g exhibited the highest predicted binding affinity at both CB1 and CB2 receptors, and all four compounds were shown to have higher predicted binding affinities with the CB2 receptor compared to their corresponding binding affinities with the CB1 receptor. Further structural optimization of 7-AIQD analogs may lead to the identification of potential clinical agents. 相似文献
2.
The purpose of the current study was to investigate the ability of the third-generation selective estrogen receptor modulators (SERMs) bazedoxifene and lasofoxifene to bind and act on CB2 cannabinoid receptor. We have identified, for the first time, that CB2 is a novel target for bazedoxifene and lasofoxifene. Our results showed that bazedoxifene and lasofoxifene were able to compete for specific [3H]CP-55,940 binding to CB2 in a concentration-dependent manner. Our data also demonstrated that by acting on CB2, bazedoxifene and lasofoxifene concentration-dependently enhanced forskolin-stimulated cAMP accumulation. Furthermore, bazedoxifene and lasofoxifene caused parallel, rightward shifts of the CP-55,940, HU-210, and WIN55,212-2 concentration–response curves without altering the efficacy of these cannabinoid agonists on CB2, which indicates that bazedoxifene- and lasofoxifene-induced CB2 antagonism is most likely competitive in nature. Our discovery that CB2 is a novel target for bazedoxifene and lasofoxifene suggests that these third-generation SERMs can potentially be repurposed for novel therapeutic indications for which CB2 is a target. In addition, identifying bazedoxifene and lasofoxifene as CB2 inverse agonists also provides important novel mechanisms of actions to explain the known therapeutic effects of these SERMs. 相似文献
3.
4.
Meccariello R Chianese R Cacciola G Cobellis G Pierantoni R Fasano S 《Molecular reproduction and development》2006,73(5):551-558
Endogenous cannabinoids and type-1 cannabinoid receptor (CB1) are widely produced and distributed in the central nervous system (CNS) and peripheral nerves in mammals. In addition, the detection of endocannabinoids and corresponding receptors in non nervous peripheral tissues indicates an involvement of the system in the control of a wide range of physiological activities, including reproduction. Recently, the existence of CB1 was also observed in lower vertebrates and in urochordate suggesting that the endocannabinoid system is phylogenetically conserved. Using RT-PCR, CB1 mRNA expression profiles were characterized in a wide range of tissues of the anuran amphibian, the frog, Rana esculenta. Besides a strong expression in the CNS, CB1 was also present in testis, kidney, liver, ovary, muscle, heart, spleen, and pituitary. The CB1 expression pattern has been characterized in both testis and CNS during the annual sexual cycle. In testis, CB1 is poorly expressed during the winter stasis of the spermatogenesis rising during the breeding season and resumption period. An expression profile mismatching to that observed in testis was detected in whole-brain preparations during the sexual cycle; in particular in the diencephalon, the encephalic area mainly involved in the control of reproductive functions. Furthermore, fluctuations inside isolated encephalic areas and spinal cord were observed all over the reproductive cycle. In conclusion, CB1 receptor is expressed in R. esculenta CNS and testis. As far as the gonad it concerns, our results suggest the involvement of the endocannabinoids in the control of reproductive function. 相似文献
5.
Patrick Möhnle Stefanie Veronika Schütz Marc Schmidt Christian Hinske Max Hübner Jens Heyn Andres Beiras-Fernandez Simone Kreth 《Biochemical and biophysical research communications》2014
The myocardial endocannabinoid system has been linked to stress response and cardioprotection. In chronic heart failure (CHF), protective CB2 receptors are markedly up-regulated while CB1 receptors are slightly down-regulated. We here provide evidence that myocardial CB receptors are subject to microRNA regulation. By a combined computational and experimental approach we show that CB1 receptors are regulated by miR-494, and CB2 receptors are targeted by miR-665. Moreover, we demonstrate that in CHF, miR-665 expression is significantly decreased while miR-494 is slightly increased, which is concordant with the previously reported alterations of CB receptors. These results suggest that in CHF, altered expression of specific miRNAs may contribute to a compensatory response of the diseased myocardium. 相似文献
6.
In neuronal signalling mediated by the endocannabinoid 2-arachidonoylglycerol, both synthetic and inactivating enzymes operate within close proximity to the G(i/o)-coupled pre-synaptic CB(1) receptors, thus allowing for rapid onset and transient duration of this lipid modulator. In rat brain, 2-arachidonoylglycerol is inactivated mainly via hydrolysis by serine hydrolase inhibitor-sensitive monoacylglycerol lipase activity. We show in this study that comprehensive pharmacological elimination of this activity in brain cryosections by methyl arachidonylfluorophosphonate or hexadecylsulphonyl fluoride results in endocannabinoid-mediated CB(1) receptor activity, which can be visualized by functional autoradiography. URB597, a specific inhibitor of anandamide hydrolysis proved ineffective. TLC indicated that the bioactivity resided in 2-arachidonoylglycerol-containing fraction and gas chromatography-mass spectroscopy detected elevated levels of monoacylglycerols, including 2-arachidonoylglycerol in this fraction. Although two diacylglycerol lipase inhibitors, tetrahydrolipstatin (THL) and RHC80267, blocked the bulk of 2-arachidonoylglycerol accumulation in methyl arachidonylfluorophosphonate-treated sections, only THL reversed the endocannabinoid-dependent CB(1) receptor activity. Further studies indicated that at the used concentrations, THL rather specifically antagonized the CB(1) receptor. These findings confirm that in brain sections there is preservation of enzymatic pathways regulating the production of endogenous receptor ligands. Furthermore, the presently described methodology may serve as an elegant and intuitive approach to identify novel membrane-derived lipid modulators operating in the CNS. 相似文献
7.
Echinacea plant preparations are widely used in the prevention and treatment of common cold. However, so far no molecular mechanism of action has been proposed. We analyzed the standardized tincture Echinaforce and found that it induced de novo synthesis of tumor necrosis factor alpha (TNF-alpha) mRNA in primary human monocytes/macrophages, but not TNF-alpha protein. Moreover, LPS-stimulated TNF-alpha protein was potently inhibited in the early phase but prolonged in the late phase. A study of the main constituents of the extract showed that the alkylamides dodeca-2E,4E,8Z,10E/Z-tetraenoic acid isobutylamides (1/2), trienoic (3) and dienoic acid (4) derivatives are responsible for this effect. The upregulation of TNF-alpha mRNA was found to be mediated by CB2 receptors, increased cAMP, p38/MAPK and JNK signaling, as well as NF-kappaB and ATF-2/CREB-1 activation. This study is the first to report a possible molecular mechanism of action of Echinacea, highlighting the role of alkylamides as potent immunomodulators and potential ligands for CB2 receptors. 相似文献
8.
Páldy E Bereczki E Sántha M Wenger T Borsodi A Zimmer A Benyhe S 《Neurochemistry international》2008,53(6-8):309-316
Formerly considered as an exclusively peripheral receptor, it is now accepted that CB(2) cannabinoid receptor is also present in limited amounts and distinct locations in the brain of several animal species, including mice. However, the possible roles of CB(2) receptors in the brain need to be clarified. The aim of our work was to study the mu-opioid receptor (MOR) mRNA expression level and functional activity after acute in vivo and in vitro treatments with the endocannabinoid noladin ether (NE) and with the CB(2) receptor antagonist SR144528 in brainstem of mice deficient in either CB(1) or CB(2) receptors. This study is based on our previous observations that noladin ether (NE) produces decrease in the activity of MOR in forebrain and this attenuation can be antagonized by the CB(2) cannabinoid antagonist SR144528, suggesting a CB(2) receptor mediated effect. We used quantitative real-time PCR to examine the changes of MOR mRNA levels, [(35)S]GTPgammaS binding assay to analyze the capability of mu-opioid agonist DAMGO to activate G-proteins and competition binding assays to directly measure the ligand binding to MOR in mice brainstem. After acute NE administration no significant changes were observed on MOR signaling. Nevertheless pretreatment of mice with SR144528 prior to the administration of NE significantly decreased MOR signaling suggesting the involvement of SR144528 in mediating the effect of MOR. mRNA expression of MORs significantly decreased both in CB(1) wild-type and CB(1) knockout mice after a single injection of SR144528 at 0.1mg/kg when compared to the vehicle treated controls. Consequently, MOR-mediated signaling was attenuated after acute in vivo treatment with SR144528 in both CB(1) wild-type and CB(1) knockout mice. In vitro addition of 1microM SR144528 caused a decrease in the maximal stimulation of DAMGO in [(35)S]GTPgammaS binding assays in CB(2) wild-type brainstem membranes whereas no significant changes were observed in CB(2) receptor knockouts. Radioligand binding competition studies showed that the noticed effect of SR144528 on MOR signaling is not mediated through MORs. Our data demonstrate that the SR144528 caused pronounced decrease in the activity of MOR is mediated via CB(2) cannabinoid receptors. 相似文献
9.
Several tryptophan (Trp) residues are conserved in G protein-coupled receptors (GPCRs). Relatively little is known about the contribution of these residues and especially of those in the fourth transmembrane domain in the function of the CB(2) cannabinoid receptor. Replacing W158 (very highly conserved in GPCRs) and W172 (conserved in CB(1) and CB(2) cannabinoid receptors but not in many other GPCRs) of the human CB(2) receptor with A or L or with F or Y produced different results. We found that the conservative change of W172 to F or Y retained cannabinoid binding and downstream signaling (inhibition of adenylyl cyclase), whereas removal of the aromatic side chain by mutating W172 to A or L eliminated agonist binding. W158 was even more sensitive to being mutated. We found that the conservative W158F mutation retained wild-type binding and signaling activities. However, W158Y and W158A mutants completely lost ligand binding capacity. Thus, the Trp side chains at positions 158 and 172 seem to have a critical, but different, role in cannabinoid binding to the human CB(2) receptor. 相似文献
10.
11.
Nicoll G Davidson S Shanley L Hing B Lear M McGuffin P Ross R MacKenzie A 《The Journal of biological chemistry》2012,287(16):12828-12834
Polymorphisms within intron 2 of the CNR1 gene, which encodes cannabinoid receptor 1 (CB(1)), have been associated with addiction, obesity, and brain volume deficits. We used comparative genomics to identify a polymorphic (rs9444584-C/T) sequence (ECR1) in intron 2 of the CNR1 gene that had been conserved for 310 million years. The C-allele of ECR1 (ECR1(C)) acted as an enhancer in hypothalamic and dorsal root ganglia cells and responded to MAPK activation through the MEKK pathway but not in hippocampal cells. However, ECR1(T) was significantly more active in hypothalamic and dorsal root ganglia cells but, significantly, and in contrast to ECR1(C), was highly active in hippocampal cells where it also responded strongly to activation of MAPK. Intriguingly, rs9444584 is in strong linkage disequilibrium with two other SNPs (rs9450898 (r(2) = 0.841) and rs2023239 (r(2) = 0.920)) that have been associated with addiction, obesity (rs2023239), and reduced fronto-temporal white matter volumes in schizophrenia patients as a result of cannabis misuse (rs9450898). Considering their high linkage disequilibrium and the increased response of ECR1(T) to MAPK signaling when compared with ECR1(C), it is possible that the functional effects of the different alleles of rs9444584 may play a role in the conditions associated with rs9450898 and rs2023239. Further analysis of the different alleles of ECR1 may lead to a greater understanding of the role of CNR1 gene misregulation in these conditions as well as chronic inflammatory pain. 相似文献
12.
AbstractSelective activation of the cannabinoid receptor subtype 2 (CB2) shows promise for treating pain, inflammation, multiple sclerosis, cancer, ischemic/reperfusion injury and osteoporosis. Target selectivity and off-target side effects are two major limiting factors for orthosteric ligands, and therefore, the search for allosteric modulators (AMs) is a widely used drug discovery approach. To date, only a limited number of negative CB2 AMs have been identified, possessing only micromolar activity at best, and the CB2 receptor’s allosteric site(s) are not well characterized. Herein, we used computational approaches including receptor modeling, site mapping, docking, molecular dynamics (MD) simulations and binding free energy calculations to predict, characterize and validate allosteric sites within the complex of the CB2 receptor with bound orthosteric agonist CP55,940. After docking of known negative CB2 allosteric modulators (NAMs), dihydro-gambogic acid (DHGA) and trans-β-caryophyllene (TBC) (note that TBC also shows agonist activity), at the predicted allosteric sites, the best total complex with CB2, CP55,940 and NAM was embedded into a hydrated lipid bilayer and subjected to a 200 ns MD simulation. The presence of an AM affected the CB2–CP55,940 complex, altering the relative positioning of the toggle switch residues and promoting a strong π–π interaction between Phe1173.36 and Trp2586.48. Binding of either TBC or DHGA to a putative allosteric pocket directly adjacent to the orthosteric ligand reduced the binding free energy of CP55,940, which is consistent with the expected effect of a negative AM. The identified allosteric sites present immense scope for the discovery of novel classes of CB2 AMs. 相似文献
13.
Huffman JW Liddle J Yu S Aung MM Abood ME Wiley JL Martin BR 《Bioorganic & medicinal chemistry》1999,7(12):2905-2914
The synthesis and pharmacology of 15 1-deoxy-delta8-THC analogues, several of which have high affinity for the CB2 receptor, are described. The deoxy cannabinoids include 1-deoxy-11-hydroxy-delta8-THC (5), 1-deoxy-delta8-THC (6), 1-deoxy-3-butyl-delta8-THC (7), 1-deoxy-3-hexyl-delta8-THC (8) and a series of 3-(1',1'-dimethylalkyl)-1-deoxy-delta8-THC analogues (2, n = 0-4, 6, 7, where n = the number of carbon atoms in the side chain-2). Three derivatives (17-19) of deoxynabilone (16) were also prepared. The affinities of each compound for the CB1 and CB2 receptors were determined employing previously described procedures. Five of the 3-(1',1'-dimethylalkyl)-1-deoxy-delta8-THC analogues (2, n = 1-5) have high affinity (Ki = < 20 nM) for the CB2 receptor. Four of them (2, n = 1-4) also have little affinity for the CB1 receptor (Ki = > 295 nM). 3-(1',1'-Dimethylbutyl)-1-deoxy-delta8-THC (2, n = 2) has very high affinity for the CB2 receptor (Ki = 3.4 +/- 1.0 nM) and little affinity for the CB1 receptor (Ki = 677 +/- 132 nM). 相似文献
14.
Di Marzo V Breivogel CS Tao Q Bridgen DT Razdan RK Zimmer AM Zimmer A Martin BR 《Journal of neurochemistry》2000,75(6):2434-2444
Anandamide [arachidonylethanolamide (AEA)] appears to be an endogenous agonist of brain cannabinoid receptors (CB(1)), yet some of the neurobehavioral effects of this compound in mice are unaffected by a selective CB(1) antagonist. We studied the levels, pharmacological actions, and degradation of AEA in transgenic mice lacking the CB(1) gene. We quantified AEA and the other endocannabinoid, 2-arachidonoyl glycerol, in six brain regions and the spinal cord by isotope-dilution liquid chromatography-mass spectrometry. The distribution of endocannabinoids and their inactivating enzyme, fatty acid amide hydrolase, were found to overlap with CB(1) distribution only in part. In CB(1) knockout homozygotes (CB(1)-/-), the hippocampus and, to a lesser extent, the striatum exhibited lower AEA levels as compared with wild-type (CB(1)+/+) controls. These data suggest a ligand/receptor relationship between AEA and CB(1) in these two brain regions, where tonic activation of the receptor may tightly regulate the biosynthesis of its endogenous ligand. 2-Arachidonoyl glycerol levels and fatty acid amide hydrolase activity were unchanged in CB(1)-/- with respect to CB(1)+/+ mice in all regions. AEA and Delta(9)-tetrahydrocannabinol (THC) were tested in CB(1)-/- mice for their capability of inducing analgesia and catalepsy and decreasing spontaneous activity. The effects of AEA, unlike THC, were not decreased in CB(1)-/- mice. AEA, but not THC, stimulated GTPgammaS binding in brain membranes from CB(1)-/- mice, and this stimulation was insensitive to CB(1) and CB(2) antagonists. We suggest that non-CB(1), non-CB(2) G protein-coupled receptors might mediate in mice some of the neuro-behavioral actions of AEA. 相似文献
15.
Tomohiro Kimura Krishna Vukoti Diane L. Lynch Dow P. Hurst Alan Grossfield Michael C. Pitman Patricia H. Reggio Alexei A. Yeliseev Klaus Gawrisch 《Proteins》2014,82(3):452-465
The global fold of human cannabinoid type 2 (CB2) receptor in the agonist‐bound active state in lipid bilayers was investigated by solid‐state 13C‐ and 15N magic‐angle spinning (MAS) NMR, in combination with chemical‐shift prediction from a structural model of the receptor obtained by microsecond‐long molecular dynamics (MD) simulations. Uniformly 13C‐ and 15N‐labeled CB2 receptor was expressed in milligram quantities by bacterial fermentation, purified, and functionally reconstituted into liposomes. 13C MAS NMR spectra were recorded without sensitivity enhancement for direct comparison of Cα, Cβ, and C?O bands of superimposed resonances with predictions from protein structures generated by MD. The experimental NMR spectra matched the calculated spectra reasonably well indicating agreement of the global fold of the protein between experiment and simulations. In particular, the 13C chemical shift distribution of Cα resonances was shown to be very sensitive to both the primary amino acid sequence and the secondary structure of CB2. Thus the shape of the Cα band can be used as an indicator of CB2 global fold. The prediction from MD simulations indicated that upon receptor activation a rather limited number of amino acid residues, mainly located in the extracellular Loop 2 and the second half of intracellular Loop 3, change their chemical shifts significantly (≥1.5 ppm for carbons and ≥5.0 ppm for nitrogens). Simulated two‐dimensional 13Cα(i)? 13C?O(i) and 13C?O(i)? 15NH(i + 1) dipolar‐interaction correlation spectra provide guidance for selective amino acid labeling and signal assignment schemes to study the molecular mechanism of activation of CB2 by solid‐state MAS NMR. Proteins 2014; 82:452–465. © 2013 Wiley Periodicals, Inc. 相似文献
16.
Cannabinoid CB(1) and the metabotropic GABA(B) receptors have been shown to display similar pharmacological effects and co-localization in certain brain regions. Previous studies have reported a functional link between the two systems. As a first step to investigate the underlying molecular mechanism, here we show cross-inhibition of G-protein signaling between GABA(B) and CB(1) receptors in rat hippocampal membranes. The CB(1) agonist R-Win55,212-2 displayed high potency and efficacy in stimulating guanosine-5'-O-(3-[(35)S]thio)triphosphate, [(35)S]GTPgammaS binding. Its effect was completely blocked by the specific CB(1) antagonist AM251 suggesting that the signaling was via CB(1) receptors. The GABA(B) agonists baclofen and SKF97541 also elevated [(35)S]GTPgammaS binding by about 60%, with potency values in the micromolar range. Phaclofen behaved as a low potency antagonist with an ED(50) approximately 1mM. However, phaclofen at low doses (1 and 10nM) slightly but significantly attenuated maximal stimulation of [(35)S]GTPgammaS binding by the CB(1) agonist R-Win55,212-2. The observation that higher concentrations of phaclofen had no such effect rule out the possibility of its direct action on CB(1) receptors. The pharmacologically inactive stereoisomer S-Win55,212-3 had no effect either alone or in combination with phaclofen establishing that the interaction is stereospecific in hippocampus. The specific CB(1) antagonist AM251 at a low dose (1 nM) also inhibited the efficacy of G-protein signaling of the GABA(B) receptor agonist SKF97541. Cross-talk of the two receptor systems was not detected in either spinal cord or cerebral cortex membranes. It is speculated that the interaction might occur via an allosteric interaction between a subset of GABA(B) and CB(1) receptors in rat hippocampal membranes. Although the exact molecular mechanism of the reciprocal inhibition between CB(1) and GABA(B) receptors will have to be explored by future studies it is intriguing that the cross-talk might be involved in balance tuning the endocannabinoid and GABAergic signaling in hippocampus. 相似文献
17.
Oxidative stress and cannabinoid receptor expression in type‐2 diabetic rat pancreas following treatment with Δ9‐THC 下载免费PDF全文
The objectives of study were (a) to determine alteration of feeding, glucose level and oxidative stress and (b) to investigate expression and localization of cannabinoid receptors in type‐2 diabetic rat pancreas treated with Δ9‐tetrahydrocannabinol (Δ9‐THC). Rats were randomly divided into four groups: control, Δ9‐THC, diabetes and diabetes + Δ9‐THC groups. Diabetic rats were treated with a single dose of nicotinamide (85 mg/kg) 15 min before injection of streptozotocin (65 mg/kg). Δ9‐THC was administered intraperitoneally at 3 mg/kg/day for 7 days. Body weights and blood glucose level of rats in all groups were measured on days 0, 7, 14 and 21. On day 15 after the Δ9‐THC injections, pancreatic tissues were removed. Blood glucose levels and body weights of diabetic rats treated with Δ9‐THC did not show statistically significant changes when compared with the diabetic animals on days 7, 14 and 21. Treatment with Δ9‐THC significantly increased pancreas glutathione levels, enzyme activities of superoxide dismutase and catalase in diabetes compared with non‐treatment diabetes group. The cannabinoid 1 receptor was found in islets, whereas the cannabinoid 2 receptor was found in pancreatic ducts. Their localization in cells was both nuclear and cytoplasmic. We can suggest that Δ9‐THC may be an important agent for the treatment of oxidative damages induced by diabetes. However, it must be supported with anti‐hyperglycaemic agents. Furthermore, the present study for the first time emphasizes that Δ9‐THC may improve pancreatic cells via cannabinoid receptors in diabetes. The aim of present study was to elucidate the effects of Δ9‐THC, a natural cannabinoid receptor agonist, on the expression and localization of cannabinoid receptors, and oxidative stress statue in type‐2 diabetic rat pancreas. Results demonstrate that the cannabinoid receptors are presented in both Langerhans islets and duct regions. The curative effects of Δ9‐THC can be occurred via activation of cannabinoid receptors in diabetic rat pancreas. Moreover, it may provide a protective effect against oxidative damage induced by diabetes. Thus, it is suggested that Δ9‐THC can be a candidate for therapeutic alternatives of diabetes symptoms. Copyright © 2014 John Wiley & Sons, Ltd. 相似文献
18.
Anandamide (AEA) is an endogenous agonist for the cannabinoid receptor 2 (CB2) which is expressed in osteoblasts. Arachidonic acid (AA) is the precursor for AEA and dietary n-3 polyunsaturated fatty acids (PUFA) are known to reduce the concentrations of AA in tissues and cells. Therefore, we hypothesized that n-3 PUFA, eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), which reduce AA in cells, could lower AEA in osteoblasts by altering enzyme expression of the endocannabinoid (EC) system. MC3T3-E1 osteoblast-like cells were grown for 6, 10, 15, 20, 25 or 30 days in osteogenic medium. Osteoblasts were treated with 10 μM of AA, EPA, DHA, oleic acid (OA) or EPA+DHA (5 μM each) for 72 h prior to their collection for measurement of mRNA and alkaline phosphatase (ALP) activity. Compared to vehicle control, osteoblasts treated with AA had higher levels of AA and n-6 PUFA while those treated with EPA and DHA had lower n-6 but higher n-3 PUFA. Independent of the fatty acid treatments, osteoblasts matured normally as evidenced by ALP activity. N-acyl phosphatidylethanolamine-selective phospholipase D (NAPE-PLD), fatty acid amide hydrolase (FAAH) and CB2 mRNA expression were higher at 20 days compared to 10 days. NAPE-PLD and CB2 mRNA was lower in osteoblasts treated with EPA compared to all other groups. Thus, mRNA expression for NAPE-PLD, FAAH, and CB2 increased during osteoblast maturation and EPA reduced mRNA for NAPE-PLD and CB2 receptor. In conclusion, EPA lowered mRNA levels for proteins of the EC system and mRNA for AEA synthesis/degradation is reported in osteoblasts. 相似文献
19.
20.
Mohammed Alqarni Kyaw Zeyar Myint Qin Tong Peng Yang Patrick Bartlow Lirong Wang Rentian Feng Xiang-Qun Xie 《Biochemical and biophysical research communications》2014
We performed molecular modeling and docking to predict a putative binding pocket and associated ligand–receptor interactions for human cannabinoid receptor 2 (CB2). Our data showed that two hydrophobic residues came in close contact with three structurally distinct CB2 ligands: CP-55,940, SR144528 and XIE95-26. Site-directed mutagenesis experiments and subsequent functional assays implicated the roles of Valine residue at position 3.32 (V113) and Leucine residue at position 5.41 (L192) in the ligand binding function and downstream signaling activities of the CB2 receptor. Four different point mutations were introduced to the wild type CB2 receptor: V113E, V113L, L192S and L192A. Our results showed that mutation of Val113 with a Glutamic acid and Leu192 with a Serine led to the complete loss of CB2 ligand binding as well as downstream signaling activities. Substitution of these residues with those that have similar hydrophobic side chains such as Leucine (V113L) and Alanine (L192A), however, allowed CB2 to retain both its ligand binding and signaling functions. Our modeling results validated by competition binding and site-directed mutagenesis experiments suggest that residues V113 and L192 play important roles in ligand binding and downstream signaling transduction of the CB2 receptor. 相似文献