首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This review is intended as a summary of our work carried out as part of the German Research Association (DFG) Center Program on Circadian Rhythms. Over the last six years, our approach to understanding circadian systems combined theoretical and experimental tools, and Gonyaulax and Neurospora have proven ideal for these efforts. Both of these model organisms demonstrate that even simple circadian systems can have multiple light input pathways and more than one rhythm generator. They have both been used to elaborate basic circadian features in conjunction with formal models. The models introduce the “zeitnehmer,” i.e., a clock-regulated input pathway, to the conceptual framework of circadian systems, and proposes networks of individual feedbacks as the basis for circadian rhythmicity.  相似文献   

2.
In adult humans, core temperature is influenced by activity; the sensitivity of core temperature to such effects shows a phase dependence and is also influenced by the environment and whether the individual is asleep or awake. We have investigated if similar effects are evident in neonates, in whom thermoregulation and the circadian rhythm of core temperature are not fully developed. Eleven full-term, healthy babies were studied singly (light 07:00-19:00) at 2 days of age and again 4 weeks after birth; between these times, they were tended routinely on a communal ward. On study days, 10-minute recordings were made of rectal and skin (abdominal) temperature, heart rate (HR), and behavioral state. Sensitivities of the temperatures to activity (“arousal”) were assessed throughout the 24h by measuring the gradient of (temperature/HR). Sensitivities measured at 01:00, 05:00, 09:00, 13:00,17:00, and 21:00 were used as dependent variables in stepwise regression and linear regression analyses, with “subjects” “light versus dark”, “behavioral state”, and “difference between time of measurement and the acrophase of the endogenous component of the temperature rhythm” (ignoring sign) as possible predictors. (Acrophases of the temperature rhythms had been estimated from 24h data purified using the behavioral state record.) Light versus dark acted as a significant predictor of the sensitivity of rectal temperature to arousal on day 2 and week 4, the sensitivity increasing in the light, and there was limited evidence for behavioral state acting as a predictor on day 2. Neither factor was a significant predictor when the sensitivity of the babies' skin temperatures to arousal was investigated. There was also some evidence that the difference between the time of measurement and the temperature acrophase acted as a predictor of sensitivity to arousal in both rectal (day 2) and skin (week 4) temperature, with larger differences decreasing the sensitivity. These results indicate that there are masking effects on body temperature due to arousal in neonates, the size of which depends on both internal and external factors. However, this sensitivity of temperature to arousal shows differences from the sensitivity of temperature to physical activity in both adult humans and adult mice. One possible explanation of this result is that temperature regulation and the circadian system are not fully developed in humans at this age. (Chronobiology International, 17(5), 679-692, 2000)  相似文献   

3.
The properties of the circadian photoperiodic oscillator have been investigated in detail only in the Japanese quail. While the study of the quail is clearly very important, one cannot simply assume that other species, especially passerines that seem to have a different circadian organization than quail, function the same way. The current set of experiments was conducted to understand the entrainment and photoinduction of the circadian photoperiodic oscillator in a passerine species, the blackheaded bunting (Emberiza melanocephala). The experimental paradigm used skeleton photoperiods with two light periods, the first called the “entraining light pulse” (E-pulse) and the second called the “inducing light pulse” (I-pulse). Three experiments were performed on photosensitive male birds (N=6-8/group). Experiment 1 investigated the effects of the temporal relationship between E- and I-pulses on photoperiodic induction. Buntings entrained to 8h:16h L:D for 4 wk were released into constant dim light (LLdim, ∼1 lux). Beginning on subjective day 8, they received for 8 wk, E- and I-pulses only at alternate cycles. While I-pulse was 1 h and always began at zt 11.5, E-pulse varied in duration and timing (the 1h E-pulse beginning either at zt 0, zt 5, or zt 9, the 4h one beginning at zt 0 or zt 6, and the 10h one at zt 0; zeitgeber time 0=time of lights-on under 8h:16h L:D prior to release into LLdim). A photoperiodic response was induced only when the E-pulse began at zt 0, and thus the beginning of E- and I-pulses were separated by 11.5 h. Experiment 2 determined whether the duration of the E-pulse influences the position of the photoinducible phase (φi) of the circadian photoperiodic oscillator. Birds were entrained to 1h:23h L:D or 10h:14h L:D for 2 wk, and then exposed to 1h I-pulse at zt 11.5, zt 15, or zt 18.5 for another 8 wk. Photoperiodic induction occurred at all 3 zts in birds entrained to 10 h but only at zt 11.5 in birds entrained to 1 h, which infers the circadian rhythm of photoinducibility (CRP) in buntings was re-entrained when I-pulse fell at zt 15 and after. The last experiment examined the possibility of the re-entrainment of the CRP to light pulses falling at zt 15 and after. Birds received 1h I-pulse for 8 wk at zt 15 following 2 wk of 2.5h:21.5h L:D or 3.5h:20.5h L:D, or at zt 21.5 or zt 22.5 following 2 wk of 10h:14h LD. Photoperiodic induction was consistent with the hypothesis of the re-entrainment of the CRP under these light-dark cycles. The I-pulse appeared to be interpreted as a “new dawn”, and so the photoperiodic induction was determined by the coincidence of φi with the E-pulse. These results suggest a phase-dependent action of light on the circadian oscillator regulating photoperiodic responses in the blackheaded bunting. This could be a useful strategy for a photoperiodic species to regulate its seasonal responses in nature.  相似文献   

4.
The effects of partition of substrates and product on the modelling of the microenvironment of an immobilized lipase were evaluated using Response Surface Methodology. The esterification of butyric acid with ethanol in n-hexane, catalyzed by Candida rugosa lipase immobilized in two biocompatible and relatively hydrophilic polyurethane foams (“Hypol FHP 2002™” and “Hypol FHP 5000™”) was used as the model system. For each set of initial conditions, the final concentration of substrates and ethyl butyrate in the microenvironment, at equilibrium, Cmicro, were estimated by mass balancing bulk and foams. The Cmicro values obtained were used to estimate the corresponding partition coefficients of ethanol (PEtOH), butyric acid (PBA) and ester (PEB), between the foams (microenvironment) and the bulk medium. Foams containing previously inactivated lipase, as well as lipase-free foams were used. For both substrates, Cmicro values were, in the majority of the experiments, higher than their macroenvironmental counterparts. The lowest Cmicro values were observed with the less hydrophilic foam (“FHP 5000”). A decrease of CmicroEtOH in both foams and CmicroBA in “FHP 5000” foams, was obtained upon lipase immobilization. PEB values were, in all cases, close to zero. This is beneficial in terms of the shift in reaction equilibrium, product recovery and alleviation of product inhibition effects.  相似文献   

5.
Circadian pacemakers control both “daytime” activity and nocturnal restlessness of migratory birds, and the daily rhythm of melatonin release from the pineal has been suggested to be involved in the control of migratory activity. To study the phase relations between the two activity components during entrainment and when free running, locomotor activity of bramblings (Fringilla montifringilla) was recorded continuously under a 12:12 “cool light” to “warm light” cycle (CL:WL, ca. 5000 K and ca. 2500 K, respectively) or blue light to red light cycle (BL:RL, maxima at 440 and 650 nm, respectively) at different irradiance ratios. Migratory activity was expressed primarily during the WL or RL phase of the light cycles. Under free-running conditions, the circadian periods τ correlated with the phase relations between day and night (migratory) activity components during preceding entrainment. Bramblings with migratory activity had significantly longer τ at constant light intensity than the same individuals without migratory activity. Birds with migratory activity reentrained faster after a 6h phase shift of the CL:WL cycle than birds without migratory activity. When exogenous melatonin was given in the drinking water (200 μg/mL 1% ethanol or 0.86 mM) to bramblings exposed to 12:12 CL:WL cycles with constant irradiance, the amounts of activity, which were initially higher during the WL phase of the light cycle, were suppressed to similar low levels during both light phases. The systematic changes in the amounts of activity during melatonin treatment were not correlated with consistent changes in entrainment status. The data support the hypothesis that changes in the amplitude and level of the daily melatonin cycle are involved in regulating migratory restlessness, by either allowing or inhibiting nocturnal activity. (Chronobiology International, 17(4), 471-488, 2000)  相似文献   

6.
The role of circadian rhythmicity in the photoperiodic time measuring processes regulating antifreeze protein production in the beetle Dendroides canadensis was further investigated. Using “T” experiments larvae were exposed to environmental light cycle periods close to the period length of the endogenous circadian oscillator. The following light cycles were employed: light/dark 8/13, 8/14, 8/16, 8/18 and 8/19 corresponding to period lengths of 21, 22, 24, 26 and 27 h. Larvae maintained in cycles equal to or less than 24 h displayed a characteristic short-day response, showing significantly (P < 0.01) greater antifreeze protein activity than did those measured on the day of collection in late summer. In contrast, a long-day response was observed in larvae maintained under a 26- or 27-h light cycle in that antifreeze protein activity did not differ from that measured on the initial collection date.

The role of photoperiod and temperature in influencing the photoperiodic timing processes were examined with a series of resonance experiments. The first group consisted of a 24, 36, 48, 60 or 72-h light cycle, each with an 8-h photophase at temperatures of 20 or 17°C. Rhythmic increases in antifreeze protein levels at intervals of 24 h occurred under both temperatures. However, the lower temperature displaced the resonance curve in the vertical direction (i.e. increasing % population response) and reduced the difference between peaks and troughs on the resonance curve. Resonance experiments incorporating a 14-h photophase resulted in low antifreeze protein activity under all conditions except a 36-h light cycle in which a 67% induction was observed.

Eight hour resonance experiments were also conducted with D. canadensis collected in early spring to determine whether the circadian system participates in the photoperiodic timing processes influencing the spring termination of antifreeze protein production. Positive resonance results were obtained in that only larvae maintained in cycles of 36 and 60 h displayed significantly (P < 0.01) lower antifreeze activity when compared to animals on the initial collection date.

The combined results emphasize the involvement of the circadian system in the photoperiodic control of antifreeze protein production by D. canadensis during the fall and spring. Furthermore, the induction of antifreeze protein production is a function of light cycle and its waveform (photoperiod). Temperature appears to modify the photoperiodic response in some manner involving the photoperiodic time measuring processes. It is concluded that the photoperiodic response of antifreeze protein production by D. canadensis is dependent upon the entrainment of the circadian system by the light cycle.  相似文献   


7.
In this paper, we report the results of our extensive study on eclosion rhythm of four independent populations of Drosophila melanogaster that were reared in constant light (LL) environment of the laboratory for more than 700 generations. The eclosion rhythm of these flies was assayed under LL, constant darkness (DD) and three periodic light-dark (LD) cycles (T20, T24, and T28). The percentage of vials from each population that exhibited circadian rhythm of eclosion in DD and in LL (intensity of approximately 100 lux) was about 90% and 18%, respectively. The mean free-running period (τ) of eclosion rhythm in DD was 22.85 ± 0.87 h (mean ± SD). Eclosion rhythm of these flies entrained to all the three periodic LD cycles, and the phase relationship (ψ) of the peak of eclosion with respect to “lights-on” of the LD cycle was significantly different in the three periodic light regimes (T20, T24, and T28). The results thus clearly demonstrate that these flies have preserved the ability to exhibit circadian rhythm of eclosion and the ability to entrain to a wide range of periodic LD cycles even after being in an aperiodic environment for several hundred generations. This suggests that circadian clocks may have intrinsic adaptive value accrued perhaps from coordinating internal metabolic cycles in constant conditions, and that the entrainment mechanisms of circadian clocks are possibly an integral part of the clockwork.  相似文献   

8.
There were 15 healthy female subjects, differing in their position on the “morningness-eveningness” scale, studied for 7 consecutive days, first while living a sedentary lifestyle and sleeping between midnight and 08:00 and then while undergoing a “constant routine.” Rectal temperature was measured at regular intervals throughout this time, and the results were subjected to cosinor analysis both before and after “purification” for the effects of physical activity. Results showed that there was a phase difference in the circadian rhythm of core temperature that was associated with the morningness score, with calculations that “morning types” would be phased earlier than “evening types” by up to about 3h. This difference in phase (which was also statistically significant when the group was divided by a median split into a “morning group” and an “evening group”) could not be attributed to effects of waking activity and existed in spite of the subjects keeping the same sleep-wake schedule. Moreover, it persisted when the subjects' data had been purified and when the data were obtained from the constant routine. That is, there was an endogenous component to this difference in phase of the core temperature. The morning group also showed a greater fall of core temperature during sleep; this was assessed in two ways, the main one being a comparison of constant routine and nychthemeral data sets after correction for any effects of activity. Even though the morning group was sleeping at a later phase of their circadian temperature rhythm than was the evening group, neither group showed a fall of temperature due to sleep that varied with time elapsed since the temperature acrophase. It is concluded that another factor that differs between morning and evening types is responsible for this difference. (Chronobiology International, 18(2), 227-247, 2001)  相似文献   

9.
Circadian clocks with characteristic period (τ) can be entrained to light/dark (LD) cycles by means of (i) phase shifts which are due to D/L “dawn” and/or L/D “dusk” transitions, (ii) period changes associated with long-term light exposure, or (iii) by combinations of the above possibilities. Based on stability analysis of a model circadian clock it was predicted that nocturnal burrowing mammals would benefit less from period responses than their diurnal counterparts. The model further predicted that maximal stability of circadian clock is reached when the clock slightly changes both its phase and period in response to light stimuli. Analyses of empirical phase response curve (PRC) and period response curve (τRC) of some diurnal and nocturnal mammals revealed that PRCs of both diurnal and nocturnal mammals have similar waveform while τRCs of nocturnal mammals are of smaller amplitude than those of diurnal mammals. The shape of the τRC also changes with age and with increasing strength of light stimuli. During erratic fluctuations in light intensity under different weather conditions, the stability of phase of entrainment of circadian clocks appears to be achieved by an interplay between phase and period responses and the strength of light stimuli.  相似文献   

10.
Agitation is a common problem in institutionalized patients with Alzheimer's disease (AD). “Sundowning,” or agitation that occurs primarily in the evening, is estimated to occur in 10—25% of nursing home patients. The current study examined circadian patterns of agitation in 85 patients with AD living in nursing homes in the San Diego, California, area. Agitation was assessed using behavioral ratings collected every 15 minutes over 3 days, and activity and light exposure data were collected continuously using Actillume recorders. A five-parameter extension of the traditional cosine function was used to describe the circadian rhythms. The mean acrophase for agitation was 14:38, although there was considerable variability in the agitation rhythms displayed by the patients. Agitation rhythms were more robust than activity rhythms. Surprisingly, only 2 patients (2.4%) were“sundowners.”In general, patients were exposed to very low levels of illumination, with higher illumination during the night being associated with less robust agitation rhythms with higher rhythm minima (i.e., some agitation present throughout the day and night). Seasonality was examined; however, there were no consistent seasonal patterns found. This is the largest study to date to examine agitation rhythms using behavioral observations over multiple 24h periods. The results suggest that, although sundowning is uncommon, agitation appears to have a strong circadian component in most patients that is related to light exposure, sleep, and medication use. Further research into the understanding of agitation rhythms is needed to examine the potential effects of interventions targeting sleep and circadian rhythms. (Chronobiology International, 17(3), 405-418, 2000)  相似文献   

11.
We have isolated from Rhodopseudomonas spheroides a pigment-protein complex of apparent weight 9 kdaltons that bears more than 60% of the light harvesting bacteriochlorophyll. The isolation procedure involved exposure to 1% lauryl dimethyl amine oxide (LDAO). The purified 9-kdalton fraction showed the light harvesting bacteriochlorophyll components B800 and B850, plus carotenoids. The ratio of bacteriochlorophyll to protein was 17%. This protein is probably the same as the “band 15” protein of Fraker and Kaplan. It may exist in vivo as characteristic aggregates of higher molecular weight. LDAO added to Rps. spheroides chromatophores converted the bacteriochlorophyll component B870 to a form absorbing at 770 nm but had little effect on the “B800 + B850” system, causing only a reversible shift of the 850-nm band to 845 nm. Anti-reaction center serum, added to subcellular fractions from Rps. spheroides with 1% LDAO, precipitated reaction center chromoprotein unaccompanied by light harvesting bacteriocholorophyll. Other antisera precipitated light harvesting components and left the reaction center chromophores in solution. A major protein of apparent weight 45 kdaltons was found in relatively nonpigmented fractions from Rps. spheroides, associated with cell wall fragments. The 45-kdalton protein showed considerable interstrain variability, whereas the 9-kdalton and reaction center proteins appeared constant.  相似文献   

12.
The effect of eye carotenoid content, light conditions and retinoid supply on the biosynthesis of opsin, as well as the ability to isomerize of exogenous all-trans-retinal to 11-cis-retinal were investigated in the photoreceptors of blowfly Calliphora. SDS-PAGE of digitonin extracts from isolated rhabdom fractions of carotenoid-fortified and carotenoid-deficient animals revealed, on heavily loaded gels, that in both cases opsin forms faint minor bands similar to the patterns of “R-flies” described as “vitamin A-deficient flies” (Paulsen and Schwemer, Biochim. biophys Acta 557, 358–390, 1979) or “carotenoid-deficient flies” (Paulsen and Schwemer, Eur. J. Biochem. 137, 609–614, 1983. Similar opsin patterns were obtained in flies subjected to continuous 72 h blue or yellow-green light or to a 12 h: 12 h white light:dark cycle, or total darkness, irrespective of the carotenoid content in their eyes. 11-cis-retinal and, to a lesser extent, all-trans-retinal, when included in the diet or painted on the cornea, were found to stimulate opsin biosynthesis in the dark. 11-cis-retinal in the dark or all-trans-retinal after illumination of the flies with blue light were the most effective, as compared with the effect of all-trans-retinal in the dark. Exogenous all-trans-retinal in the dark can be partially converted into a mixture of 11-cis-retinal (26%) and 13-cis-retinal (74%) by fly retina homogenate in vitro. It was concluded that Calliphora opsin biosynthesis is not strongly dependent on the carotenoid supply or on light: dark conditions and is triggered by the 11-cis aldehyde form of the chromophore, which can be produced in the fly retina either by an isomerase system in the dark or as a result of photoisomerization.  相似文献   

13.
Since the initial studies reporting that light can alter the phase position of the human circadian system, there has been increasing interest in the use of bright light as a tool for manipulating the phase position of the circadian pacemaker. Exposure protocols typically require subjects to receive 2-5 h of exposure over several circadian cycles. As a consequence, bright light treatment can involve a considerable time investment. However, recent studies indicate that a single pulse of bright light can produce significant phase shifts in the circadian pacemaker. If a single pulse of bright light can produce significant phase-shifting effects, multiple-pulse designs may be unnecessary. This study examined the phase-shifting effects of a single 4-h pulse of bright light (12,000 lux) in 14 male and one female subject aged between 19-45 years. With use of a “constant routine” to estimate circadian phase, a single 4-h pulse of light produced significant shifts in the phase of the core temperature rhythm. The timing of the exposure, relative to the core temperature rhythm, determined the degree and direction of the phase shift. Exposure immediately prior to habitual bedtime produced a mean phase delay in the core temperature of 2.39 h (SD = 1.37 h). In contrast, exposure immediately following habitual wake-up produced a mean phase advance of 1.49 h (SD = 2.06 h). In addition, the magnitude of the shift increased the closer the light pulse was to the individual's estimated endogenous core temperature minimum. There was, however, considerable interindividual variability in this relationship. Overall, these results confirm that a single pulse of bright light can produce significant phase shifts in the phase of the circadian pacemaker controlling core temperature. Key Words: Bright light—Circadian rhythm—Core body temperature—Sleep-wake disorders—Chronobiology.  相似文献   

14.
Fourteen healthy subjects have been studied in an isolation unit while living on a 30h “day” (20h awake, 10h asleep) for 14 (solar) days but while aware of real time. Waking activities were sedentary and included reading, watching television, and so forth. Throughout, regular recordings of rectal temperature were made, and in a subgroup of 6 subjects, activity was measured by a wrist accelerometer. Temperature data have been subjected to cosinor analysis after “purification,” a method that enables the endogenous (clock-driven) and exogenous (activity-driven) components of the circadian rhythm to be assessed. Moreover, the protocol enables effects due to the circadian rhythm and time-since-waking to be separated. Results showed that activity was slightly affected by the endogenous temperature rhythm. Also, the masking effects on body temperature exerted by the exogenous factors appeared to be less than average in the hours before and just after the peak of the endogenous temperature rhythm. This has the effect of producing a temperature plateau rather than a peak during the daytime. The implications of this for mental performance and sleep initiation are discussed. (Chronobiology International, 13(4), 261-271, 1996)  相似文献   

15.
Computer simulation of performance on “normal” and “episodic” temporal generalization tasks was used to examine the relations between the theoretical parameters of models which fit temporal generalization data (“timing sensitivity” and “threshold”), and the d′ (detectability) and beta (decision criterion) measures of signal-detection theory. In general, changes in timing sensitivity altered d′, whereas threshold changes affected beta, supporting the assertion that the two sorts of variables (“sensitivity/detectability” and “threshold/criterion”) were psychologically equivalent. Cases where temporal generalization gradients were apparently contaminated by “random responding” could be treated by changes in beta, but cases in which temporal generalization gradients were not peaked at the standard posed severe problems for a simple signal-detection account, although existing models of temporal generalization performance could deal with them.  相似文献   

16.
The eclosion rhythm of a laboratory population of Drosophila melanogaster was studied under 12h light, 12h dark (LD 12:12) cycles. Although most of the flies were found to eclose just after “lights on” in LD 12:12, termed within gate (WG) flies, a few flies were found to eclose nearly 10h after peak eclosion, termed outside gate (OG) flies. The circadian parameters of the clocks controlling oviposition rhythms in the WG and the OG flies were estimated to understand the cause of such differences in the timing of eclosion. The distribution of the fraction of individual flies exhibiting single, multiple, and no significant period in the WG flies was significantly different from distribution in the OG flies. Compared to the WG flies, more OG flies were found to exhibit oviposition rhythm with multiple periodicity, whereas more WG flies exhibited an oviposition rhythm with a single significant period. The fraction of flies with arrhythmic oviposition was similar in both the WG and the OG flies. Free-running period τ in constant darkness (DD) and the phase angle difference ψ in LD 12:12 for the oviposition rhythm of WG and OG flies were significantly different. These results suggest that the differences in the time of eclosion between the flies eclosing within the gate and outside the gate of eclosion are probably due to differences in the circadian system controlling eclosion, which is reflected by the differences in their oviposition rhythm. (Chronobiology International, 18(4), 601-612, 2001)  相似文献   

17.
18.
19.
Using both previously published findings and entirely new data, we present evidence in support of the argument that the circadian dysfunction of advancing age in the healthy human is primarily one of failing to transduce the circadian signal from the circadian timing system (CTS) to rhythms “downstream” from the pacemaker rather than one of failing to generate the circadian signal itself. Two downstream rhythms are considered: subjective alertness and objective performance. For subjective alertness, we show that in both normal nychthemeral (24h routine, sleeping at night) and unmasking (36h of constant wakeful bed rest) conditions, advancing age, especially in men, leads to flattening of subjective alertness rhythms, even when circadian temperature rhythms are relatively robust. For objective performance, an unmasking experiment involving manual dexterity, visual search, and visual vigilance tasks was used to demonstrate that the relationship between temperature and performance is strong in the young, but not in older subjects (and especially not in older men). (Chronobiology International, 17(3), 355-368, 2000)  相似文献   

20.
Aimed at improving animal fertility and health, diets for farm and laboratory animals have over the last few years been supplemented with increasing amounts of the antioxidant vitamin E. We now demonstrate by intravital microscopy that feeding hamsters with a vitamin E-supplemented “standard” rodent diet (60 ppm vitamin E) significantly reduces the microvascular manifestations of ischemia/reperfusion injury when compared to animals fed a nonsupplemented diet. Postischemic leukocyte adhesion to venular endothelium was reduced from 770 ± 204 cells/mm2 at 24 h after reperfusion in control animals on the nonsupplemented diet to 403 ± 105 cells/mm2 in animals on the “standard” rodent diet (means ± SD, N = 7 animals per group, p < 0.01). Animals on the nonsupplemented diet showed a dramatic loss of capillary perfusion density until 7 days after reperfusion (to 21 ± 13% of preischemic baseline values), whereas this loss was significantly attenuated (to 71 ± 12% of preischemic values, p < 0.01) in animals on the “standard” rodent diet. No difference in the extent of reperfusion injury was seen between animals on the “standard” rodent diet and animals on diets with substantially higher vitamin E supplements (300 ppm–30.000 ppm). Besides underscoring the benefit of vitamin E in reducing the extent of ischemia/reperfusion injury, this study raises the concern that vitamin E supplements in “standard” laboratory animal diets may have a far-reaching impact on biomedical research by jeopardizing established animal models of disease.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号