首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
4.
5.
The imprint at the mat1 locus of Schizosaccharomyces pombe acts to initiate the replication-coupled recombination event that underlies mating-type switching. However, the nature of the imprint has been an area of dispute. Two alternative models have been proposed: one stated that the imprint is a nick in the DNA, whereas our data suggested that it consists of one or two ribonucleotides incorporated into the otherwise intact DNA duplex. Here, we verify key predictions of the RNA model by characterization of wild-type genomic DNA purified under conditions known to hydrolyse DNA-RNA-DNA hybrid strands. First, we observe one-nucleotide gap at the hydrolysed DNA, as expected from the presence of two ribonucleotides. Second, using a novel assay based on ligation-mediated PCR, a 3'-terminal ribonucleotide is detected at the hydrolysed imprint. Our observations allow the unification of available data sets characterizing the wild-type imprint.  相似文献   

6.
7.
Mating-type (MT) switching in homothallic (h> 90 ) strains of Schizosaccharomyces pombe is initiated by a DNA double-strand break (DSB) at the distal end of the expression cassette mat1. The cis-acting smt-s1 mutation C13-P11 reduces the frequency of MT switching. It is a small deletion mapping approximately 50 by distal to the site of the DSB. From the h 90 smt-s1 strain we isolated 13 mutants with a hyperspeckled iodine reaction. In these mutants the frequency of MT switching is increased. The mutations define nine different hsp genes, none of which maps in or close to the MT region. We tested one mutant of each gene for the presence of DSBs at mat1. Curiously, in none of the h 90 smt-s1 hsp strains could DSBs be detected, although some sporulate nearly as efficiently as the h 90 smt-n wild type. The hsp mutations show no effect in smt-0 strains; the smt-0 deletion abolishes MT switching completely. Furthermore, we tested the interaction of hsp1-1 with swi1, swi2 and swi7 mutations. hsp1-1 has no effect in swi2 strains, whereas it increases MT switching in swi7 and, to a lesser degree, in swi1 mutants.  相似文献   

8.
9.
10.
Watson AT  Garcia V  Bone N  Carr AM  Armstrong J 《Gene》2008,407(1-2):63-74
Cre/lox site-specific recombination systems provide important tools for genetic manipulation. Here we present an efficient method for gene tagging and gene replacement using Cre recombinase-mediated cassette exchange (RMCE). The cassette consists of the S. pombe ura4(+) selectable marker flanked by a wild-type loxP site at one end and by a modified heterospecific lox site (loxM3) at the other. The cassette is stable because the flanking lox sites cannot recombine with each other. Following integration of the cassette at the chosen chromosomal locus, exchange is achieved by introducing a Cre-expression plasmid containing an equivalent cassette containing the required tag or gene sequence. Recombinants are selected by uracil prototrophy using the reagent 5-fluoroorotic acid (5-FOA). The cassette exchange system provides for repetitive integrations at the same locus, allowing different protein tags or gene sequences to be integrated quickly and efficiently. We have established a range of reagents and verified utility by C-terminally tagging the S. pombe rad4 and swi1 genes with yEGFP and the yEGFP derivatives yECFP and yECitrine and by transferring the coding sequence for both genes.  相似文献   

11.
The fission yeast Schizosaccharomyces pombe contains two dithiol glutaredoxins (Grx1 and Grx2) and genes for three putative monothiol glutaredoxins (grx3, 4, and 5). We investigated the expression, sub-cellular localization, and functions of the three monothiol glutaredoxins. Fluorescence microscopy revealed that Grx3 is targeted to nuclear rim and endoplasmic reticulum, Grx4 primarily to the nucleus, and Grx5 to mitochondria. Null mutation of grx3 did not significantly affect growth and resistance against various oxidants, whereas grx5 mutation caused slow growth and sensitivity toward oxidants such as hydrogen peroxide, paraquat, and diamide. The grx2grx5 double mutation, deficient in all mitochondrial glutaredoxins, caused further retardation in growth and severe sensitivity toward all the oxidants tested. The grx4 mutation was not viable, suggesting a critical role of Grx4 for the physiology of S. pombe. Overproduction of Grx3 and Grx5, but not the truncated form of Grx5 without mitochondrial target sequence, severely retarded growth as Grx2 did, supporting the idea that Grx2, 3, and 5 are targeted to organellar compartments. Our results propose a distinct role for each glutaredoxin to maintain thiol redox balance, and hence the growth and stress resistance, of the fission yeast.  相似文献   

12.
Yu C  Bonaduce MJ  Klar AJ 《Genetics》2012,191(1):285-289
A novel mating-type switching-defective mutant showed a highly unstable rearrangement at the mating-type locus (mat1) in fission yeast. The mutation resulted from local amplification of a 134-bp DNA fragment by the mat1-switching phenomenon. We speculate that the rolling-circle-like replication and homologous recombination might be the general mechanisms for local genome region expansion.  相似文献   

13.
14.
15.
16.
17.
A V Ferreira  Z An  R L Metzenberg  N L Glass 《Genetics》1998,148(3):1069-1079
The mating-type locus of Neurospora crassa regulates mating identity and entry into the sexual cycle. The mat A idiomorph encodes three genes, mat A-1, mat A-2, and mat A-3. Mutations in mat A-1 result in strains that have lost mating identity and vegetative incompatibility with mat a strains. A strain containing mutations in both mat A-2 and mat A-3 is able to mate, but forms few ascospores. In this study, we describe the isolation and characterization of a mutant deleted for mat (deltamatA), as well as mutants in either mat A-2 or mat A-3. The deltamatA strain is morphologically wild type during vegetative growth, but it is sterile and heterokaryon compatible with both mat A and mat a strains. The mat A-2 and mat A-3 mutants are also normal during vegetative growth, mate as a mat A strain, and produce abundant biparental asci in crosses with mat a, and are thus indistinguishable from a wild-type mat A strain. These data and the fact that the mat A-2 mat A-3 double mutant makes few asci with ascospores indicate that MAT A-2 and MAT A-3 are redundant and may function in the same pathway. Analysis of the expression of two genes (sdv-1 and sdv-4) in the various mat mutants suggests that the mat A polypeptides function in concert to regulate the expression of some sexual development genes.  相似文献   

18.
19.
Jilani A  Ramotar D 《Biochemistry》2002,41(24):7688-7694
Cells that depend on oxygen for survival constantly produce reactive oxygen species that attack DNA to produce a variety of lesions, including single-strand breaks with 3'-blocking groups such as 3'-phosphate and 3'-phosphoglycolate. These 3'-blocking ends prevent the activity of DNA polymerase and are generally removed by DNA repair proteins with 3'-diesterase activity. We report here the purification and partial characterization of a 45 kDa protein from Schizosaccharomyces pombe total extract based on the ability of this protein to process bleomycin- or H(2)O(2)-damaged DNA in vitro to allow DNA repair synthesis by DNA polymerase I. Further analysis revealed that the 45 kDa protein removes 3'-phosphate ends created by the Escherichia coli fpg AP lyase following the incision of AP site but is unable to process the 3'-alpha,beta unsaturated aldehyde generated by E. coli endonuclease III. The protein cannot cleave DNA bearing AP sites, suggesting that it is not an AP endonuclease or AP lyase. We conclude that the 45 kDa protein purified from S. pombe is a DNA 3'-phosphatase.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号