首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Plk1 (Polo-like kinase 1) has been documented as a critical regulator of many mitotic events. However, increasing evidence supports the notion that Plk1 might also have functions outside of mitosis. Using biochemical fractionation and RNA interference approaches, we found that Plk1 was required for both G(1)/S and G(2)/M phases and that DNA topoisomerase IIalpha (topoIIalpha) was a potential target for Plk1 in both interphase and mitosis. Plk1 phosphorylates Ser(1337) and Ser(1524) of topoIIalpha. Overexpression of an unphosphorylatable topoIIalpha mutant led to S phase arrest, suggesting that Plk1-associated phosphorylation first occurs in S phase. Moreover, overexpression of the unphosphorylatable topoIIalpha mutant activated the ATM/R-dependent DNA damage checkpoint, probably due to reduced catalytic activity of topoIIalpha, and resulted in accumulation of catenated DNA. Finally, we showed that wild type topoIIalpha, but not the unphosphorylatable mutant, was able to rescue topoIIalpha depletion-induced defects in sister chromatid segregation, indicating that Plk1-associated phosphorylation is essential for the functions of topoIIalpha in mitosis.  相似文献   

3.
The presence of DNA topoisomerase IIalpha was investigated in interphase and metaphase mouse erythroleukemia (MEL) Friend-S cells, and in extracted with 25 mM lithium diiodosalicylate buffer (Lis) nuclei using indirect immunofluorescence. The results showed that DNA topoisomerase IIalpha is localised in the nuclei. In the metaphase cells, we found high concentrations of this enzyme in the mitotic chromosomes. Our results support the idea of the accumulation of DNA topoisomerase IIalpha at the end of the cell cycle. The extractions of nuclei with 25 mM Lis led to the complete depletion of DNA topoisomerase IIalpha from the residual nuclear matrix. Using a high dilution of the first antibody, we established that the high level of heterochromatin compactisation in the interphase nuclei is caused by the high concentration of DNA topoisomerase IIalpha.  相似文献   

4.
DNA topoisomerase IIα (TopoIIα) is an essential chromosome-associated enzyme with activity implicated in the resolution of tangled DNA at centromeres before anaphase onset. However, the regulatory mechanism of TopoIIα activity is not understood. Here, we show that PIASy-mediated small ubiquitin-like modifier 2/3 (SUMO2/3) modification of TopoIIα strongly inhibits TopoIIα decatenation activity. Using mass spectrometry and biochemical analysis, we demonstrate that TopoIIα is SUMOylated at lysine 660 (Lys660), a residue located in the DNA gate domain, where both DNA cleavage and religation take place. Remarkably, loss of SUMOylation on Lys660 eliminates SUMOylation-dependent inhibition of TopoIIα, which indicates that Lys660 SUMOylation is critical for PIASy-mediated inhibition of TopoIIα activity. Together, our findings provide evidence for the regulation of TopoIIα activity on mitotic chromosomes by SUMOylation. Therefore, we propose a novel mechanism for regulation of centromeric DNA catenation during mitosis by PIASy-mediated SUMOylation of TopoIIα.  相似文献   

5.
DNA topoisomerase II is a multidomain homodimeric enzyme that changes DNA topology by coupling ATP hydrolysis to the transport of one DNA helix through a transient double-stranded break in another. The process requires dramatic conformational changes including closure of an ATP-operated clamp, which is comprised of two N-terminal domains from each protomer. The most N-terminal domain contains the ATP-binding site and is directly involved in clamp closure, undergoing dimerization upon ATP binding. The second domain, the transducer domain, forms the walls of the N-terminal clamp and connects the clamp to the enzyme core. Although structurally conserved, it is unclear whether the transducer domain is involved in clamp mechanism. We have purified and characterized a human topoisomerase II alpha enzyme with a two-amino acid insertion at position 408 in the transducer domain. The enzyme retains both ATPase and DNA cleavage activities. However, the insertion, which is situated far from the N-terminal dimerization area, severely disrupts the function of the N-terminal clamp. The clamp-deficient enzyme is catalytically inactive and lacks most aspects of interdomain communication. Surprisingly, it seems to have retained the intersubunit communication, allowing it to bind ATP cooperatively in the presence of DNA. The results show that even distal parts of the transducer domain are important for the dynamics of the N-terminal clamp and furthermore indicate that stable clamp closure is not required for cooperative binding of ATP.  相似文献   

6.
Bromberg KD  Burgin AB  Osheroff N 《Biochemistry》2003,42(12):3393-3398
Several important antineoplastic drugs kill cells by increasing levels of topoisomerase II-mediated DNA breaks. These compounds act by two distinct mechanisms. Agents such as etoposide inhibit the ability of topoisomerase II to ligate enzyme-linked DNA breaks. Conversely, compounds such as quinolones have little effect on ligation and are believed to stimulate the forward rate of topoisomerase II-mediated DNA cleavage. The fact that there are two scissile bonds per double-stranded DNA break implies that there are two sites for drug action in every enzyme-DNA cleavage complex. However, since agents in the latter group are believed to act by locally perturbing DNA structure, it is possible that quinolone interactions at a single scissile bond are sufficient to distort both strands of the double helix and generate an enzyme-mediated double-stranded DNA break. Therefore, an oligonucleotide system was established to further define the actions of topoisomerase II-targeted drugs that stimulate the forward rate of DNA cleavage. Results indicate that the presence of the quinolone CP-115,953 at one scissile bond increased the extent of enzyme-mediated scission at the opposite scissile bond and was sufficient to stimulate the formation of a double-stranded DNA break by human topoisomerase IIalpha. These findings stand in marked contrast to those for etoposide, which must be present at both scissile bonds to stabilize a double-stranded DNA break [Bromberg, K. D., et al. (2003) J. Biol. Chem. 278, 7406-7412]. Moreover, they underscore important mechanistic differences between drugs that enhance DNA cleavage and those that inhibit ligation.  相似文献   

7.
Recent results suggest a role for topoIIalpha (topoisomerase IIalpha) in the fine-tuning of mitotic entry. Mitotic entry is accompanied by the formation of specific phosphoepitopes such as MPM-2 (mitotic protein monoclonal 2) that are believed to control mitotic processes. Surprisingly, the MPM-2 kinase of topoIIalpha was identified as protein kinase CK2, otherwise known as a constitutive interphase kinase. This suggested the existence of alternative pathways for the creation of mitotic phosphoepitopes, different from the classical pathway where the substrate is phosphorylated by a mitotic kinase. In the present paper, we report that topoIIalpha is co-localized with both CK2 and PP2A (protein phosphatase 2A) during interphase. Simultaneous incubation of purified topoIIalpha with CK2 and PP2A had minimal influence on the total phosphorylation levels of topoIIalpha, but resulted in complete disappearance of the MPM-2 phosphoepitope owing to opposite sequence preferences of CK2 and PP2A. Accordingly, short-term exposure of interphase cells to okadaic acid, a selective PP2A inhibitor, was accompanied by the specific appearance of the MPM-2 phosphoepitope on topoIIalpha. During early mitosis, PP2A was translocated from the nucleus, while CK2 remained in the nucleus until pro-metaphase thus permitting the formation of the MPM-2 phosphoepitope. These results underline the importance of protein phosphatases as an alternative way of creating cell-cycle-specific phosphoepitopes.  相似文献   

8.
An expression library for active site mutants of human topoisomerase IIalpha (TOP2alpha) was constructed by replacing the sequence encoding residues 793-808 with a randomized oligonucleotide cassette. This plasmid library was transformed into a temperature-sensitive yeast strain (top2-1), and viable transformants were selected at the restrictive temperature. Among the active TOP2alpha mutants, no substitution was allowed at Tyr(805), the 5' anchor of the cleaved DNA, and only conservative substitutions were allowed at Leu(794), Asp(797), Ala(801), and Arg(804). Thus, these 5 residues are critical for human TOP2alpha activity, and the remaining mutagenized residues are less critical for function. Using the x-ray crystal structure of yeast TOP2 as a structural model, it can be deduced that these 5 functionally important residues lie in a plane. One of the possible functions of this plane may be that it interacts with the DNA substrate upon catalysis. The side chains of Ser(803) and Lys(798), which confer drug resistance, lie adjacent to this plane.  相似文献   

9.
In this study we have investigated the role of topoisomerase (topo) IIalpha trafficking in cellular drug resistance. To accomplish this, it was necessary to separate the influence of cell cycle, drug uptake, topo protein levels, and enzyme trafficking on drug sensitivity. Thus, we developed a cell model (called accelerated plateau) using human myeloma H929 cells that reproducibly translocates topo IIalpha to the cytoplasm. Compared to log-phase cells, the cytoplasmic redistribution of topo IIalpha in plateau-phase cells correlated with a 10-fold resistance to VP-16 and a 40-60% reduction in the number of drug-induced double-strand DNA breaks. In addition, 7-fold more VP-16 was necessary to achieve 50% topo IIalpha band depletion, suggesting that there are fewer drug-induced topo-DNA complexes formed in quiescent cells than in log-phase cells. The total cellular amount of topo IIalpha and topo IIbeta protein in log- and plateau-phase cells was similar as determined by Western blot analysis. There was a 25% reduction in S-phase cell number in plateau cells (determined by bromodeoxyuridine (BrdU) incorporation), while there was no significant difference in the equilibrium concentrations of [(3)H]-VP-16 when log cells were compared with plateau cells. Furthermore, the nuclear/cytoplasmic ratio of topo IIalpha is increased 58-fold in accelerated-plateau H929 cells treated with leptomycin B (LMB) when compared to untreated cells. It appears that the nuclear-cytoplasmic shuttling of topo IIalpha, which decreases the amount of nuclear target enzyme, is a major mechanism of drug resistance to topo II inhibitors in plateau-phase myeloma cells.  相似文献   

10.
Topoisomerase IIbeta binding to DNA has been analysed by surface plasmon resonance for the first time. Three DNA substrates with different secondary structures were studied, a 40 bp oligonucleotide, a four way junction and a 189 bp bent DNA fragment. We also compared the DNA binding kinetics of both human topoisomerase isoforms under identical conditions. Both alpha and beta isoforms exhibited similar binding kinetics, with average equilibrium dissociation constants ranging between 1.4 and 2.9 nM. We therefore conclude that neither isoform has any preference for a specific DNA substrate under the conditions used in these experiments.  相似文献   

11.
Epipodophyllotoxins are effective antitumour drugs that trap eukaryotic DNA topoisomerase II in a covalent complex with DNA. Based on DNA cleavage assays, the mode of interaction of these drugs was proposed to involve amino acid residues of the catalytic site. An in vitro binding study, however, revealed two potential binding sites for etoposide within human DNA topoisomerase IIα (htopoIIα), one in the catalytic core of the enzyme and one in the ATP-binding N-terminal domain. Here we have tested how N-terminal mutations that reduce the affinity of the site for etoposide or ATP affect the sensitivity of yeast cells to etoposide. Surprisingly, when introduced into full-length enzymes, mutations that lower the drug binding capacity of the N-terminal domain in vitro render yeast more sensitive to epipodophyllotoxins. Consistently, when the htopoIIα N-terminal domain alone is overexpressed in the presence of yeast topoII, cells become more resistant to etoposide. Point mutations that weaken etoposide binding eliminate this resistance phenotype. We argue that the N-terminal ATP-binding pocket competes with the active site of the holoenzyme for binding etoposide both in cis and in trans with different outcomes, suggesting that each topoisomerase II monomer has two non-equivalent drug-binding sites.  相似文献   

12.
Although centromere function has been conserved through evolution, apparently no interspecies consensus DNA sequence exists. Instead, centromere DNA may be interconnected through the formation of certain DNA structures creating topological binding sites for centromeric proteins. DNA topoisomerase II is a protein, which is located at centromeres, and enzymatic topoisomerase II activity correlates with centromere activity in human cells. It is therefore possible that topoisomerase II recognizes and interacts with the alpha satellite DNA of human centromeres through an interaction with potential DNA structures formed solely at active centromeres. In the present study, human topoisomerase IIα-mediated cleavage at centromeric DNA sequences was examined in vitro. The investigation has revealed that the enzyme recognizes and cleaves a specific hairpin structure formed by alpha satellite DNA. The topoisomerase introduces a single-stranded break at the hairpin loop in a reaction, where DNA ligation is partly uncoupled from the cleavage reaction. A mutational analysis has revealed, which features of the hairpin are required for topoisomerease IIα-mediated cleavage. Based on this a model is discussed, where topoisomerase II interacts with two hairpins as a mediator of centromere cohesion.  相似文献   

13.
The mitogen-activated protein (MAP) kinases, extracellular signal-related kinase 1 (ERK1) and ERK2, regulate cellular responses by mediating extracellular growth signals toward cytoplasmic and nuclear targets. A potential target for ERK is topoisomerase IIalpha, which becomes highly phosphorylated during mitosis and is required for several aspects of nucleic acid metabolism, including chromosome condensation and daughter chromosome separation. In this study, we demonstrated interactions between ERK2 and topoisomerase IIalpha proteins by coimmunoprecipitation from mixtures of purified enzymes and from nuclear extracts. In vitro, diphosphorylated active ERK2 phosphorylated topoisomerase IIalpha and enhanced its specific activity by sevenfold, as measured by DNA relaxation assays, whereas unphosphorylated ERK2 had no effect. However, activation of topoisomerase II was also observed with diphosphorylated inactive mutant ERK2, suggesting a mechanism of activation that depends on the phosphorylation state of ERK2 but not on its kinase activity. Nevertheless, activation of ERK by transient transfection of constitutively active mutant MAP kinase kinase 1 (MKK1) enhanced endogenous topoisomerase II activity by fourfold. Our findings indicate that ERK regulates topoisomerase IIalpha in vitro and in vivo, suggesting a potential target for the MKK/ERK pathway in the modulation of chromatin reorganization events during mitosis and in other phases of the cell cycle.  相似文献   

14.
DNA topoisomerase (topo) II is an essential nuclear enzyme that plays an important role in DNA metabolism and chromosome organization. In the present study, we expressed human topo IIalpha in mammalian cells by fusion to an enhanced green fluorescent protein (EGFP). Decatenation assays indicated that the EGFP-topo IIalpha is catalytically active in vitro. Assays for band depletion, growth inhibition, and cytotoxicity by topo II inhibitors suggested that the fusion protein is also functional in vivo. By following its subcellular localization throughout the cell cycle in living cells, we found that the fusion protein is localized to the nucleus and nucleolus at interphase, and it is bound to chromosomal DNA at every stage of mitosis. Of importance, a mutant EGFP-topo IIalpha, in which the active Tyr 805 is replaced by Phe (Y805F) and is catalytically inactive, still binds to chromosomal DNA throughout the cell cycle like the wild-type enzyme. Together, our results suggest that the ability of topo IIalpha to bind to chromosomal DNA in the cell, a presumed requirement for its structural role, can be separated from its catalytic activity.  相似文献   

15.
The DNA cleavage reaction of human topoisomerase IIα is critical to all of the physiological and pharmacological functions of the protein. While it has long been known that the type II enzyme requires a divalent metal ion in order to cleave DNA, the role of the cation in this process is not known. To resolve this fundamental issue, the present study utilized a series of divalent metal ions with varying thiophilicities in conjunction with DNA cleavage substrates that replaced the 3′-bridging oxygen of the scissile bond with a sulfur atom (i.e. 3′-bridging phosphorothiolates). Rates and levels of DNA scission were greatly enhanced when thiophilic metal ions were included in reactions that utilized sulfur-containing substrates. Based on these results and those of reactions that employed divalent cation mixtures, we propose that topoisomerase IIα mediates DNA cleavage via a two-metal-ion mechanism. In this model, one of the metal ions makes a critical interaction with the 3′-bridging atom of the scissile phosphate. This interaction greatly accelerates rates of enzyme-mediated DNA cleavage, and most likely is needed to stabilize the leaving 3′-oxygen.  相似文献   

16.
Deweese JE  Burgin AB  Osheroff N 《Biochemistry》2008,47(13):4129-4140
The ability to cleave DNA is critical to the cellular and pharmacological functions of human type II topoisomerases. However, the low level of cleavage at equilibrium and the tight coupling of the cleavage and ligation reactions make it difficult to characterize the mechanism by which these enzymes cut DNA. Therefore, to establish a system that isolates topoisomerase II-mediated DNA scission from ligation, oligonucleotide substrates were developed that contained a 3'-bridging phosphorothiolate at the scissile bond. Scission of these substrates generates a 3'-terminal -SH moiety that is a poor nucleophile relative to the normal 3'-terminal -OH group. Consequently, topoisomerase II cannot efficiently ligate phosphorothiolate substrates once they are cleaved. The characteristics of topoisomerase IIalpha-mediated cleavage of phosphorothiolate oligonucleotides were identical to those seen with wild-type substrates, except that no ligation was observed. This unidirectional accumulation of cleavage complexes provided critical information regarding coordination of the protomer subunits of topoisomerase IIalpha and the mechanism of action of topoisomerase II poisons. Results indicate that the two enzyme subunits are partially coordinated and that cleavage at one scissile bond increases the degree of cleavage at the other. Furthermore, anticancer drugs such as etoposide and amsacrine that strongly inhibit topoisomerase II-mediated DNA ligation have little effect on the forward scission reaction. In contrast, abasic sites that increase levels of cleavage complexes without affecting ligation stimulate the forward rate of scission. Phosphorothiolate substrates provide significant advantages over traditional "suicide substrates" and should be valuable for future studies on DNA scission and the topoisomerase II-DNA cleavage complex.  相似文献   

17.
18.
Human DNA topoisomerase IIalpha (topo II), a ubiquitous nuclear enzyme, is essential for normal and neoplastic cellular proliferation and survival. Several common anticancer drugs exert their cytotoxic effects through interaction with topo II. In experimental systems, altered topo II expression has been associated with the appearance of drug resistance. This mechanism, however, does not adequately account for clinical cases of resistance to topo II-directed drugs. Modulation by protein-protein interactions represents one mechanism of topo II regulation that has not been extensively defined. Our laboratory has identified 14-3-3epsilon as a topo II-interacting protein. In this study, glutathione S-transferase co-precipitation, affinity column chromatography, and immunoprecipitations confirm the authenticity of these interactions. Three assays evaluate the impact of 14-3-3epsilon on distinct topo II functional properties. Using both a modified alkaline comet assay and a DNA cleavage assay, we demonstrate that 14-3-3epsilon negatively affects the ability of the chemotherapeutic, etoposide, to trap topo II in cleavable complexes with DNA, thereby preventing DNA strand breaks. By electrophoretic mobility shift assay, this appears to be due to reduced DNA binding activity. The association of topo II with 14-3-3 proteins does not extend to all 14-3-3 isoforms. No protein interaction or disruption of topo II function was observed with 14-3-3final sigma.  相似文献   

19.
We introduced a series of Pro substitutions within and near the α4 helix, a part of the breakage/rejoining region, in human DNA topoisomerase IIα, and analyzed if this region is involved in determination of anti-cancer drug sensitivity in a temperature- sensitive yeast strain (top2-4 allele). Among the 19 mutants generated, H759P and N770P showed resistance to etoposide and doxorubicin at the non-permissive temperature, where cell growth depends on activity of the human enzyme. For these residues, mutants with an Ala substitution were further created, in which H759A also showed resistance to etoposide. H759P, H759A and N770P were expressed, purified and subjected to in vitro measurement of drug sensitivity. They generated lower amounts of the etoposide-induced cleavable complexes, and were also found to have lower decatenation activity than the wild-type. In the crystal structure, the yeast equivalent of His759 is found in the vicinity of the Arg713, a putative anchoring residue of the 3′-side of cleaved DNA strands. These results suggest that His759 and the other α4 helix residues are involved in the enzymatic activity and drug sensitivity of human DNA topoisomerase IIα, via interaction with cleaved DNA.  相似文献   

20.
DNA Topoisomerase IIalpha (topoIIalpha) is a DNA decatenating enzyme, abundant constituent of mammalian mitotic chromosomes, and target of numerous antitumor drugs, but its exact role in chromosome structure and dynamics is unclear. In a powerful new approach to this important problem, with significant advantages over the use of topoII inhibitors or RNA interference, we have generated and characterized a human cell line (HTETOP) in which >99.5% topoIIalpha expression can be silenced in all cells by the addition of tetracycline. TopoIIalpha-depleted HTETOP cells enter mitosis and undergo chromosome condensation, albeit with delayed kinetics, but normal anaphases and cytokineses are completely prevented, and all cells die, some becoming polyploid in the process. Cells can be rescued by expression of topoIIalpha fused to green fluorescent protein (GFP), even when certain phosphorylation sites have been mutated, but not when the catalytic residue Y805 is mutated. Thus, in addition to validating GFP-tagged topoIIalpha as an indicator for endogenous topoIIalpha dynamics, our analyses provide new evidence that topoIIalpha plays a largely redundant role in chromosome condensation, but an essential catalytic role in chromosome segregation that cannot be complemented by topoIIbeta and does not require phosphorylation at serine residues 1106, 1247, 1354, or 1393.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号