首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
The predominant T cell subset in the bone marrow of specific pathogen-free C57BL/Ka and BALB/c mice expressed the alpha beta+ TCR CD4- CD8- surface phenotype. Purified C57BL/Ka alpha beta+ TCR CD4- CD8- marrow cells obtained by cell sorting suppressed the MLR of C57BL/Ka responder and BALB/c stimulator spleen cells. Although the percentage of typical T cells in the spleen was markedly reduced in adult nude mice or normal neonatal mice as compared to the normal adult, the percentage of alpha beta+ TCR CD4- CD8- cells in the spleen and marrow was not. The percentage of "self-reactive" V beta 5+ T cells in the BALB/c spleen was markedly reduced as compared to that in the C57BL/Ka spleen. However, the percentages in the bone marrow were similar. The results indicate that the predominant subset of marrow T cells in these pathogen-free mice differ with regard to surface marker phenotype, function, dependence on the adult thymus, and deletion of certain self-reactive V beta receptors as compared to typical spleen T cells. The marrow T cells appear to develop directly from marrow precursors without rearranged beta chain genes during a 48 hour in vitro culture.  相似文献   

3.
As a consequence of the peptide specificity of intrathymic positive selection, mice transgenic for a rearranged TCR beta-chain derived from conventional alphabeta T lymphocytes frequently carry mature T cells with significant skewing in the repertoire of the companion alpha-chain. To assess the generality of such an influence, we generated transgenic (Tg) mice expressing a beta-chain derived from nonclassical, NK1.1+ alphabeta T cells, the thymus-derived, CD1. 1-specific DN32H6 T cell hybridoma. Results of the sequence analysis of genomic DNA from developing DN32H6 beta Tg thymocytes revealed that the frequency of the parental alpha-chain sequence, in this instance the Valpha14-Jalpha281 canonical alpha-chain, is specifically and in a CD1.1-dependent manner, increased in the postselection thymocyte population. In accordance, we found phenotypic and functional evidence for an increased frequency of thymic, but interestingly not peripheral, NK1.1+ alphabeta T cells in DN32H6 beta Tg mice, possibly indicating a thymic determinant-dependent maintenance. Thus, in vivo expression of the rearranged TCR beta-chain from a thymus-derived NK1.1+ Valpha14+ T cell hybridoma promotes positive selection of thymic NK1.1+ alphabeta T cells. These observations indicate that the strong influence of productive beta-chain rearrangements on the TCR sequence and specificity of developing thymocytes, which operates through positive selection on self-determinants, applies to both classical and nonclassical alphabeta T cells and therefore represents a general phenomenon in intrathymic alphabeta T lymphocyte development.  相似文献   

4.
5.
CD4-, CD8- thymocytes were purified from thymi obtained from normal C57BL/6 mice. By flow cytometry analysis, 5 to 10% of these double negative (DN) thymocytes were found to express NK1.1 on their surface. The NK1.1+ DN thymocytes were demonstrated, by two-color fluorescence, to be CD3lo, CD5hi, CD44hi, J11d-, B220-, MEL 14-, IL2R- with 60% expressing TCR-V beta 8 as determined by the mAb F23.1. In contrast, splenic and peripheral blood NK cells were NK1.1+, CD3-, CD5-, TCR-V beta 8- with 40 to 60% being MEL 14+. Unlike peripheral NK cells, fresh DN thymocytes enriched for NK1.1+ cells were unable to kill YAC-1, the classical murine NK cell target. However, these cells were able to mediate anti-CD3 redirected lysis even when they were assayed immediately after purification, i.e., with no culture or stimulation. These data demonstrate that adult murine thymocytes contain NK1.1+ cells which are distinct, both by function and phenotype, from peripheral NK cells. These data also raise the issue of a possible NK/T bipotential progenitor cell.  相似文献   

6.
7.
This study follows our previous investigation describing the production of four cytokines (IL-2, IL-4, IFN-gamma, and TNF-alpha) by subsets of thymocytes defined by the expression of CD3, 4, 8, and 25. Here we investigate in greater detail subpopulations of CD4-CD8- double negative (DN) thymocytes. First we divided immature CD25-CD4-CD8-CD3- (CD25- triple negative) (TN) thymocytes into CD44+ and CD44- subsets. The CD44+ population includes very immature precursor T cells and produced high titers of IL-2, TNF-alpha, and IFN-gamma upon activation with calcium ionophore and phorbol ester. In contrast, the CD44- subset of CD25- TN thymocytes did not produce any of the cytokines studied under similar activation conditions. This observation indicates that the latter subset, which differentiates spontaneously in vitro into CD4+CD8+, already resembles CD4+CD8+ thymocytes (which do not produce any of the tested cytokines). We also subdivided the more mature CD3+ DN thymocytes into TCR-alpha beta- and TCR-gamma delta-bearing subsets. These cells produced cytokines upon activation with solid phase anti-CD3 mAb. gamma delta TCR+ DN thymocytes produced IL-2, IFN-gamma and TNF-alpha, whereas alpha beta TCR+ DN thymocytes produced IL-4, IFN-gamma, and TNF-alpha but not IL-2. We then studied alpha beta TCR+ DN T cells isolated from the spleen and found a similar cytokine production profile. Furthermore, splenic alpha beta TCR+ DN cells showed a TCR V beta gene expression profile reminiscent of alpha beta TCR+ DN thymocytes (predominant use of V beta 8.2). These observations suggest that at least some alpha beta TCR+ DN splenocytes are derived from alpha beta TCR+ DN thymocytes and also raises the possibility that these cells may play a role in the development of Th2 responses through their production of IL-4.  相似文献   

8.
Grafting of cells from B10.D2 (H-2d) donors into H-2 compatible lethally irradiated (DBA/2 x B10.D2)F1 hosts results in a severe graft-vs-host reaction (GVHR), developed against DBA/2 non-H-2 Ag, with only 0 to 10% of animals surviving. This GVHR mortality rate is dramatically reduced (90 to 100% of animals survive) by donor preimmunization against Mlsa determinants. The protection against GVHR correlates with a decreased B10.D2 anti-DBA/2 proliferative response in vitro. Both in vivo and in vitro phenomena are associated with activation of CD5+ suppressor T cells in the spleens of immunized mice. The present work was designed to study the origin of these suppressor cells and to further characterize their phenotype. The results show that significant suppression is not inducible in "B" mice. In contrast, in mice that were only thymectomized or else pretreated in vivo with anti-CD4 or anti-CD8 mAb, the suppressor cells are activated as efficiently as in normal mice. The suppression of GVHR mortality and proliferative responses in vitro is lost after depletion from preimmunized splenocytes of CD5+ T cells and remains unaltered after depletion of CD4+ or CD8+ T cells or both. Depletion of asialo GM1+ cells removes all NK activity, whereas the suppression is decreased only slightly. FACS analysis showed that double-negative (DN) cells from normal and immunized mice contain both CD3+ and CD3- cells; the vast majority of the CD3+ DN T cells express the alpha/beta T cell receptor. Suppression of GVHR and of proliferative responses in vitro are abrogated after elimination of CD3+ cells. These results suggest that Mlsa generated suppressor cells: 1) are derived from post-thymic long-lived T cell precursors; 2) are low asialo GM-1+ but do not exhibit NK activity; 3) belong to a subset of peripheral CD5+ DN T cells bearing a CD3-associated alpha/beta-heterodimer.  相似文献   

9.
Using mice deficient for LFA-1, CD44, and ICAM-1, we examined the role of these adhesion molecules in NK1.1+TCR alpha beta+ (NKT) cell development. Although no defect in NKT cell development was observed in CD44-/- and ICAM-1-/- mice, a dramatic reduction of liver NKT cells was observed in LFA-1-/- mice. Normal numbers of NKT cells were present in other lymphoid organs in LFA-1-/- mice. When LFA-1-/- splenocytes were injected i.v. into wild-type mice, the frequency of NKT cells among donor-derived cells in the recipient liver was normal. In contrast, when LFA-1-/- bone marrow (BM) cells were injected i.v. into irradiated wild-type mice, the frequency of liver NKT cells was significantly lower than that of mice injected with wild-type BM cells. Collectively, these data indicate that LFA-1 is required for the development of liver NKT cells, rather than the migration to and/or subsequent establishment of mature NKT cells in the liver.  相似文献   

10.
A sizable fraction of T cells expressing the NK cell marker NK1.1 (NKT cells) bear a very conserved TCR, characterized by homologous invariant (inv.) TCR V alpha 24-J alpha Q and V alpha 14-J alpha 18 rearrangements in humans and mice, respectively, and are thus defined as inv. NKT cells. Because human inv. NKT cells recognize mouse CD1d in vitro, we wondered whether a human inv. V alpha 24 TCR could be selected in vivo by mouse ligands presented by CD1d, thereby supporting the development of inv. NKT cells in mice. Therefore, we generated transgenic (Tg) mice expressing the human inv. V alpha 24-J alpha Q TCR chain in all T cells. The expression of the human inv. V alpha 24 TCR in TCR C alpha(-/-) mice indeed rescues the development of inv. NKT cells, which home preferentially to the liver and respond to the CD1d-restricted ligand alpha-galactosylceramide (alpha-GalCer). However, unlike inv. NKT cells from non-Tg mice, the majority of NKT cells in V alpha 24 Tg mice display a double-negative phenotype, as well as a significant increase in TCR V beta 7 and a corresponding decrease in TCR V beta 8.2 use. Despite the forced expression of the human CD1d-restricted TCR in C alpha(-/-) mice, staining with mCD1d-alpha-GalCer tetramers reveals that the absolute numbers of peripheral CD1d-dependent T lymphocytes increase at most by 2-fold. This increase is accounted for mainly by an increased fraction of NK1.1(-) T cells that bind CD1d-alpha-GalCer tetramers. These findings indicate that human inv. V alpha 24 TCR supports the development of CD1d-dependent lymphocytes in mice, and argue for a tight homeostatic control on the total number of inv. NKT cells. Thus, human inv. V alpha 24 TCR-expressing mice are a valuable model to study different aspects of the inv. NKT cell subset.  相似文献   

11.
Experimental infection of C57BL/6 mice by Plasmodium yoelii sporozoites induced an increase of CD4-CD8- NK1.1+ TCR alpha beta int cells and a down-regulation of CD4+ NK1.1+ TCR alpha beta int cells in the liver during the acute phase of the infection. These cells showed an activated CD69+, CD122+, CD44high, and CD62Lhigh surface phenotype. Analysis of the expressed TCRV beta segment repertoire revealed that most of the expanded CD4-CD8- (double-negative) T cells presented a skewed TCRV beta repertoire and preferentially used V beta 2 and V beta 7 rather than V beta 8. To get an insight into the function of expanded NK1.1+ T cells, experiments were designed in vitro to study their activity against P. yoelii liver stage development. P. yoelii-primed CD3+ NK1.1+ intrahepatic lymphocytes inhibited parasite growth within the hepatocyte. The antiplasmodial effector function of the parasite-induced NK1.1+ liver T cells was almost totally reversed with an anti-CD3 Ab. Moreover, IFN-gamma was in part involved in this antiparasite activity. These results suggest that up-regulation of CD4-CD8- NK1.1+ alpha beta T cells and down-regulation of CD4+ NK1.1+ TCR alpha beta int cells may contribute to the early immune response induced by the Plasmodium during the prime infection.  相似文献   

12.
A fibroblastoid cell line TSt-4 was established from fetal thymus tissue of C57BL/6 mice. When fetal thymus (FT) cells or CD4-8- (DN) cells of adult thymuses were cultured on the monolayer of TSt-4, a considerable proportion of lymphocytes expressed CD4 or both CD4 and CD8 within 1 day, and the CD4+CD8- cells were maintained further while the CD4+8+ cells disappeared by Day 5. A large proportion of cells generated from DN cells but not FT cells was shown to express CD3 and T cell receptor alpha beta. Addition of recombinant interleukin (IL)-7 into the cultures resulted in a marked increase of cell recovery without virtual change in differentiation process of alpha beta lineage. The present work strongly suggests that thymic fibroblasts play an important role in T cell differentiation and IL-7 contributes to supporting proliferation of differentiated cells.  相似文献   

13.
The majority of T lymphocytes carrying the NK cell marker NK1.1 (NKT cells) depend on the CD1d molecule for their development and are distinguished by their potent capacity to rapidly secrete cytokines upon activation. A substantial fraction of NKT cells express a restricted TCR repertiore using an invariant TCR Valpha14-Jalpha281 rearrangement and a limited set of TCR Vbeta segments, implying recognition of a limited set of CD1d-associated ligands. A second group of CD1d-reactive T cells use diverse TCR potentially recognizing a larger diversity of ligands presented on CD1d. In TCR-transgenic mice carrying rearranged TCR genes from a CD1d-reactive T cell with the diverse type receptor (using Valpha3. 2/Vbeta9 rearrangements), the majority of T cells expressing the transgenic TCR had the typical phenotype of NKT cells. They expressed NK1.1, CD122, intermediate TCR levels, and markers indicating previous activation and were CD4/CD8 double negative or CD4+. Upon activation in vitro, the cells secreted large amounts of IL-4 and IFN-gamma, a characteristic of NKT cells. In mice lacking CD1d, TCR-transgenic cells with the NKT phenotype were absent. This demonstrates that a CD1d-reactive TCR of the "non-Valpha 14" diverse type can, in a ligand-dependent way, direct development of NK1.1+ T cells expressing expected functional and cell-surface phenotype characteristics.  相似文献   

14.
Phenotypic analysis of the medullary-type CD4+CD8- (CD4SP) thymocytes have revealed phenotypic heterogeneity within these cells. The phenotype of mature peripheral T cells is Qa-2+ HSA- CD69-, whereas in the medullary-type CD4SP thymocytes, the expression pattern of many markers were quite different, suggesting that the medullary-type CD4SP thymocytes may undergo phenotypic maturation. According to the results of two-color cytometry, seven discrete phenotypes were defined by the relative expression of Qa-2, HSA, CD69, 3G11 and 6C10: 3G11-6C10+CD69+HSAhi-->3G11+6C10+CD69+ HSAhi-->3G11+6C10-CD69+HSAint-->3G11+6C10- CD69-HSAint Qa-2(-)-->3G11+HSAlo/-Qa-2lo, at the same time, 3G11+6C10-CD69-HSAint Qa-2(-)-->3G11-HSAlo Qa-2(-)-->3G11-HSAlo/- Qa-2hi, the last two Qa-2 positive subsets could exit the thymus and home into periphery.  相似文献   

15.
A better understanding of the regulatory role of genital tract T cells is much needed. In this study, we have analyzed the phenotype, distribution, and function of T lymphocytes in the female genital tract of naive, pregnant, or Chlamydia trachomatis-infected C57BL/6 mice. Unexpectedly, we found that the dominant lymphocyte population (70-90%) in the genital tract was that of CD3(+)alphabetaTCR(int)CD4(-)CD8(-) T cells. Moreover, these cells were CD90(low) but negative for the classical T cell markers CD2 and CD5. The CD3(+)B220(low) cells were NK1.1 negative and found in nude mice as well as in mice deficient for MHC class II, beta(2)-microglobulin, and CD1, indicating extrathymic origin. They dominated the KJ126(+)Vbeta8.2(+) population in the genital tract of DO11.10 OVA TCR-transgenic mice, further supporting the idea that the CD3(+)B220(low) cells are truly T cells. The function of these T cells appeared not to be associated with immune protection, because only CD4(+) and CD8(+) T cells increased in the genital tract following chlamydial infection. Notwithstanding this, the infected, as well as the uninfected and the pregnant, uterus was dominated by a high level of the CD3(+)CD4(-)CD8(-)B220(low) cells. Following in vitro Ag or polyclonal stimulation of the CD3(+)CD4(-)CD8(-)B220(low) cells, poor proliferative responses were observed. However, these cells strongly impaired splenic T cell proliferation in a cell density-dependent manner. A large fraction of the cells expressed CD25 and produced IFN-gamma upon anti-CD3 plus anti-CD28 stimulation, arguing for a strong regulatory role of this novel T cell population in the mouse female genital tract.  相似文献   

16.
The development of methods of avoiding graft-versus-host disease (GVHD) while retaining the alloengraftment-promoting and anti-leukemic effects of allogeneic T cells is a major goal of research in bone marrow transplantation (BMT). We have recently obtained evidence suggesting that natural suppressor (NS) cells derived from T cell-depleted (TCD) syngeneic marrow can protect against GVHD while permitting alloengraftment. We have now attempted to enrich and then propagate NS cells in vitro, with the goal of obtaining an enhanced anti-GVHD effect by adoptive transfer in vivo. Two long-term cell lines were generated culturing BMC depleted of Mac1-positive cells and of Mac1-positive plus Thy1-positive cells in high concentrations of IL-2. Both cell lines showed anti-GVHD effects when administered along with a GVHD-producing inoculum, while permitting complete allogeneic reconstitution. A clone derived from Mac1-depleted BMC protected completely against a more chronic pattern of GVHD. These cell lines demonstrated suppressive activity in vitro, cytolytic activity against a broad range of natural killer (NK)-sensitive and NK-resistant targets, and a novel cell surface phenotype, with characteristics of both alpha beta-TcR-bearing T cells and of NK cells. In some respects, these cells resemble LAK cells and differ from fresh NS cells, and from the cloned NS cells derived from spleens of total lymphoid irradiation (TLI)-treated mice and neonatal mice. To our knowledge, this is the first detailed phenotypic analysis of cell lines with in vivo anti-GVHD activity. If applicability can be demonstrated in large animal models, the ability to use bone marrow as a source of such protective cell lines might also have potential utility in clinical BMT.  相似文献   

17.
The functional capabilities of human peripheral blood CD3+CD4-CD8- and CD3+CD4+CD8+ T cell clones were examined. The clones were generated by culturing purified populations of CD3+CD4-CD8- and CD3+CD4+CD8+ T cells at limiting dilution (0.3 cell/well) in the presence of PHA, rIL-2, and irradiated PBMC as feeders. Twelve CD3+CD4-CD8- and 5 CD3+CD4+CD8+ clones were generated. Clonality was documented by analyzing TCR gamma- and beta-chain rearrangement patterns. All CD3+CD4-CD8- clones were stained by the TCR-delta 1 mAb that identifies a framework epitope of the TCR delta-chain, but not by mAb WT31 that identifies the TCR-alpha beta on mature T cells. In contrast, the CD3+CD4+CD8+ clones were all stained by WT31 and not by TCR-delta 1. All 17 clones were screened for various functional activities. Each secreted IL-2, IFN-gamma, and lymphotoxin/TNF-like factors when stimulated with immobilized mAb to CD3 (64.1), albeit in varying quantities. These clones secreted far less IL-2 and IFN-gamma than CD3+CD4+CD8- or CD3+CD4-CD8+ alpha beta expressing clones, but comparable amounts of lymphotoxin/TNF. All clones also functioned as MHC-unrestricted cytotoxic cells. This activity was comparable to that mediated by the CD3+CD4+CD8- or CD3+CD4-CD8+ alpha beta clones. Nine of 12 CD3+CD4-CD8- and 4 of 5 CD3+CD4+CD8+ clones were able to support B cell differentiation when activated by immobilized anti-CD3, but usually not as effectively as the CD3+CD4+CD8- or CD3+CD4-CD8+ alpha beta clones. The differences in the functional capabilities of the various clones could not be accounted for by alterations in the signaling capacity of the CD3 molecular complex as mAb to CD3 induced comparable increases in intracellular free calcium in each clone examined. When clones were stimulated with PWM, each suppressed B cell differentiation supported by mitomycin C-treated fresh CD4+ T lymphocytes. Suppression was dependent on the number of clone cells added to culture, but could be observed with as few as 12,500 cells per microtiter well. Phenotypic analysis of the clones revealed that all expressed CD29, CD11b, and the NKH1 surface Ag. These results demonstrate that the CD3+CD4-CD8- and CD3+CD4+CD8+ T cell clones exhibit many of the functional characteristics of mature T cells, although they produce IL-2 and IFN-gamma and provide help for B cell differentiation less effectively than CD3+CD4+CD8- and CD3+CD4-CD8+ alpha beta T cell clones.  相似文献   

18.
The T lymphocytes that accumulate in vast numbers in the lymphoid tissues of lpr/lpr (lpr) mice express a TCR-alpha beta that is polyclonally rearranged, and yet is devoid of surface CD4 or CD8 (CD4-8-) as well as CD2. lpr CD2- alpha beta + CD4-8- T cells exhibit an apparent block in signal transduction, in that when activated they produce little or no IL-2 and proliferate minimally in the absence of exogenous IL-2. In contrast to the predominant hyporesponsive alpha beta + CD4-8- T cells, we observe that a minor subset (1 to 2%) of lpr lymph node CD4-8- cells expresses a TCR-gamma delta and can proliferate upon activation with PMA and ionomycin in the absence of exogenous IL-2. Furthermore, these responsive gamma delta T cells express surface CD2. The functional and phenotypic distinctions of lpr gamma delta T cells led us to identify an analogous minor (4 to 10%) subset of alpha beta + CD4-8- cells in lpr thymus and lymph nodes that does express CD2. Similar to the gamma delta subset, these CD2+ alpha beta + CD4-8- cells are also capable of proliferation and IL-2 production. Thus the capacity for IL-2 production and proliferation by a small proportion of lpr CD4-8- T cells, either alpha beta + or gamma delta +, correlates with their expression of surface CD2. This correlation is supported by the observation that the lpr liver contains actively cycling alpha beta + CD4-8- lymphocytes that are strikingly enriched for CD2 expression. Consequently, unlike the vast proportion of abnormal lpr CD2- CD3+ CD4-8- cells, the CD2+ CD3+ CD4-8- T cells may not express the basic lpr defect, or else are not affected by its presence. These studies suggest that expression of the lpr abnormality may be restricted to a particular T cell lineage. This functional correlation with CD2 expression may be more broadly applicable to phenotypically similar subsets of normal thymocytes, and possibly peripheral tolerized T lymphocytes.  相似文献   

19.
We studied Rag2-deficient mice bearing two rearranged alphabeta TCR transgenes, both restricted to the MHC H-2D(b) class I molecule. We have previously shown that, in these DTg mice, most peripheral CD8 T cells express one TCRbeta chain associated with two TCRalpha chains, as in one-third of the mature T cells from normal mice. We examined the functional behavior of the dual-receptor CD8 T cells developing either in the absence or in the presence of self-Ag. The dual-receptor CD8 T cells, which develop in absence of self-Ag, show efficient responses to immunization and remain sensitive to induction of peripheral tolerance. In contrast to single TCR T cells, the dual-TCR cells, when tolerized upon exposure to high levels of self-Ag, are not deleted and therefore may exert important regulatory functions. When developing in the presence of self-Ag, the dual-receptor-expressing CD8 T cells escape central deletion, but are not fully competent to respond to cognate stimuli. Overall, we found that the dual-TCR CD8 T cells show a poor competitive value and can be out-competed by single-TCR cells, both in the course of immune responses and in reconstitution experiments. The decreased fitness of the dual-receptor cells may contribute to diminishing the autoimmune hazard that they could represent.  相似文献   

20.
Analysis of TCR of a series of CD4-8- (double negative; DN) alpha beta T cell lines induced with IL-3 revealed that their V gene usage was biased for V alpha 4 and V beta 2. This has been confirmed in the primary short-term cultures. Thus, IL-3 induced the generation of DN alpha beta T cells with predominant V beta 2 gene expression from the CD4+/CD8+ T cell-depleted spleen or bone marrow (BM) cells of both normal and nude BALB/c mice within 10 days. It was further indicated that the V beta 2+ beta-chain genes contained few junctional N regions in both IL-3-induced primary DN alpha beta T cells and continuous lines. Search for the in vivo counterpart of in vitro IL-3-induced DN alpha beta T cells revealed that BM, but not spleens, of normal BALB/c and B6 mice did contain a significant proportion of DN alpha beta T cells, and that the majority of them expressed V beta 2+ beta-chain genes with few junctional N regions. The presence of V beta 2+ DN alpha beta T cells was similarly observed in the BM of BALB/c nude mice, but their proportion varied markedly among various strains of mice, which was not linked to H-2 haplotypes. The results indicated that V beta 2+ DN alpha beta T cells in the BM represented one of the thymus-independent T cell populations, whose development was under the major histocompatibility Ag complex-unlinked genetic control. TCR of these T cells were shown to be functional as judged by the proliferative response to anti-V beta 2 antibody. Taken together, present results suggested that IL-3 could induce differentiation and/or proliferation of DN alpha beta T cells with uniquely limited repertoire, which existed preferentially in BM in vivo, and implied the possible involvement of extrathymic endogenous ligands as a positive selection force.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号