首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Mitochondria from the parasitic helminth, Hymenolepis diminuta, catalyzed both NADPH:NAD+ and NADH:NADP+ transhydrogenase reactions which were demonstrable employing the appropriate acetylpyridine nucleotide derivative as the hydride ion acceptor. Thionicotinamide NAD+ would not serve as the oxidant in the former reaction. Under the assay conditions employed, neither reaction was energy linked, and the NADPH:NAD+ system was approximately five times more active than the NADH:NADP+ system. The NADH:NADP+ reaction was inhibited by phosphate and imidazole buffers, EDTA, and adenyl nucleotides, while the NADPH:NAD+ reaction was inhibited only slightly by imidazole and unaffected by EDTA and adenyl nucleotides. Enzyme coupling techniques revealed that both transhydrogenase systems functioned when the appropriate physiological pyridine nucleotide was the hydride ion acceptor. An NADH:NAD+ transhydrogenase system, which was unaffected by EDTA, or adenyl nucleotides, also was demonstrable in the mitochondria of H. diminuta. Saturation kinetics indicated that the NADH:NAD+ reaction was the product of an independent enzyme system. Mitochondria derived from another parasitic helminth, Ascaris lumbricoides, catalyzed only a single transhydrogenase reaction, i.e., the NADH:NAD+ activity. Transhydrogenase systems from both parasites were essentially membrane bound and localized on the inner mitochondrial membrane. Physiologically, the NADPH:NAD+ transhydrogenase of H. diminuta may serve to couple the intramitochondrial metabolism of malate (via an NADP linked “malic” enzyme) to the anaerobic NADH-dependent ATP-generating fumarate reductase system. In A. lumbricoides, where the intramitochondrial metabolism of malate depends on an NAD-linked “malic” enzyme which is localized primarily in the intermembrane space, the NADH:NAD+ transhydrogenase activity may serve physiologically in the translocation of hydride ions across the inner membrane to the anaerobic energy-generating fumarate reductase system.  相似文献   

2.
When rat liver mitochondria were suspended in 0.15 m KCl, the cytochrome c appeared to be solubilized from the binding site on the outside of the inner membrane and trapped in the intermembrane space. When the outer membrane of these mitochondria was disrupted with digitonin at a digitonin concentration of 0.15 mg/mg of protein, the solubilized cytochrome c could be released from mitochondria along with adenylate kinase. When mitochondria were suspended in 0.15 m KCl instead of 0.33 m sucrose, the ADPO ratio observed with succinate, β-hydroxybutyrate, malate + pyruvate or glutamate as substrates was little affected. A number of cycles of State 4-State 3-State 4 with ADP was observed. The respiratory control ratios, however, were decreased, particularly when glutamate was used as the substrate. Cytochrome c oxidase activity was also decreased to 55% when assayed using ascorbate + N,N,N′,N′-tetramethyl-p-phenylene-diamine (TMPD) as substrates. Suspension of mitochondria in 0.15 m KCl resulted in an enhancement of the very low NADH oxidation by intact mitochondria and a twofold enhancement of sulfite oxidation. Trapped cytochrome c in outer membrane vesicles prepared from untreated and trypsin-treated intact mitochondria was found to be readily reduced by NADH and suggests that some cytochrome b5 is located on the inner surface of the outer membrane. The enhanced NADH oxidase could therefore reflect the ability of cytochrome c to mediate intermembrane electron transport. The enhanced sulfite oxidase activity was sensitive to cyanide inhibition and coupled to oxidative phosphorylation (ADPO < 1) unlike the activity of mitochondria in sucrose medium. These results suggest that free cytochrome c in the intermembrane space can mediate electron transfer between the sulfite oxidase and the inner membrane.  相似文献   

3.
Plant (and fungal) mitochondria contain multiple NAD(P)H dehydrogenases in the inner membrane all of which are connected to the respiratory chain via ubiquinone. On the outer surface, facing the intermembrane space and the cytoplasm, NADH and NADPH are oxidized by what is probably a single low-molecular-weight, nonproton-pumping, unspecific rotenone-insensitive NAD(P)H dehydrogenase. Exogenous NADH oxidation is completely dependent on the presence of free Ca2+ with aK 0.5 of about 1 µM. On the inner surface facing the matrix there are two dehydrogenases: (1) the proton-pumping rotenone-sensitive multisubunit Complex I with properties similar to those of Complex I in mammalian and fungal mitochondria. (2) a rotenone-insensitive NAD(P)H dehydrogenase with equal activity with NADH and NADPH and no proton-pumping activity. The NADPH-oxidizing activity of this enzyme is completely dependent on Ca2+ with aK 0.5 of 3 µM. The enzyme consists of a single subunit of 26 kDa and has a native size of 76 kDa, which means that it may form a trimer.  相似文献   

4.
NADH enzyme-dependent fluorescence recovery after photobleaching (ED-FRAP) was evaluated for studying enzyme kinetics in vitro and in isolated mitochondria. Mass, optical, and nuclear magnetic resonance spectroscopy data were consistent with the UV NADH photolysis reaction being NADH → NAD· + H+ + e. The overall net reaction was O2 + 2NADH + 2H+ → 2NAD+ + 2H2O, or in the presence of other competing electron acceptors such as cytochrome c, NADH + 2Cytox → NAD+ + H+ + 2Cytred. Solution pH could differentiate between these free-radical scavenging pathways. These net reactions represent the photooxidation of NADH to NAD+. Kinetic models and acquisition schemes were developed, varying [NADH] and [NAD] by altering NADH photolysis levels, for extracting kinetic parameters. UV irradiation levels used did not damage mitochondrial function or enzymatic activity. In mitochondria, [NADH] is a high affinity product inhibitor that significantly reduced the NADH regeneration rate. Matrix NADH regeneration only slightly exceeded the net rate of NADH consumption, suggesting that the NADH regeneration process is far from equilibrium. Evaluation of NADH regeneration in active mitochondria, in comparison to rotenone-treated preparations, revealed other regulatory elements in addition to matrix [NADH] and [NAD] that have yet to be fully characterized. These studies demonstrate that the rapid UV photolysis of NADH to NAD is an effective tool in evaluating the steady-state kinetic properties of enzyme systems. Initial data support the notion that the NADH regeneration process is far from equilibrium in mitochondria and is potentially controlled by NADH levels as well as several other matrix factors.  相似文献   

5.
The effect of various agents on the activation of succinate dehydrogenase in cauliflower (Brassica oleracea) and mung bean (Phaseolus aureus) mitochondria and in sonicated particles has been investigated. Reduced coenzyme Q10, inosine diphosphate, inosine triphosphate, acid pH, and anions activate the enzyme in mitochondria from higher plants in the same manner as in mammalian preparations. Significant differences have been detected in the behavior of plant and animal preparations in the effects of ATP, ADP, NADH, NAD-linked substrates, and of 2, 4-dinitrophenol on the state of activation of the dehydrogenase. In mammalian mitochondria ATP activates, whereas ADP does not, and the ATP effect is shown only in intact mitochondria. In mung bean and cauliflower mitochondria, both ATP and ADP activate and the effect is also shown in sonicated and frozen-thawed preparations. In sonicated mung bean mitochondria NADH causes complete activation, as in mammalian submitochondrial particles, but in sonicated cauliflower mitochondria activation by NADH is incomplete, as is also true of intact, anaerobic cauliflower mitochondria. Moreover, neither NAD-linked substrates nor a combination of these with NADH can fully activate the enzyme in cauliflower mitochondria. In contrast to mammalian mitochondria, succinate dehydrogenase is not deactivated in cauliflower or mung beam mitochondria under the oxidized conditions brought about by uncoupling of oxidative phosphorylation by 2,4-dinitrophenol.  相似文献   

6.
Potassium fluxes integrate mitochondria into cellular activities, controlling their volume homeostasis and structural integrity in many pathophysiological mechanisms. The outer mitochondrial membrane (OMM) is thought to play a passive role in this process because K+ is believed to equilibrate freely between the cytosol and mitochondrial intermembrane space. By patch clamping mitochondria isolated from the central nervous systems of adult mitoCFP transgenic mice, we discovered the existence of IOMMKi, a novel voltage-dependent inwardly rectifying K+ conductance located in the OMM. IOMMKi is regulated by osmolarity, potentiated by cAMP, and activated at physiological negative potentials, allowing K+ to enter the mitochondrial intermembrane space in a controlled regulated fashion. The identification of IOMMKi in the OMM supports the notion that a membrane potential could exist across this membrane in vivo and suggests that the OMM possesses regulated pathways for K+ uptake.  相似文献   

7.
Sulfite oxidase, a soluble enzyme in mitochondrial intermembrane space, was synthesized as a precursor protein larger than the authentic enzyme when rat liver RNA was translated invitro using reticulocyte lysate. When the invitro translation products were incubated with isolated rat liver mitochondria, the precursor of sulfite oxidase was converted to the size of the mature enzyme. The invitro processed mature enzyme was no longer susceptible to externally added proteases and was extractable by a hypotonic treatment of the mitochondria, suggesting its location in the intermembrane space. When mitochondria were subfractionated, most of the processing activity was recovered in the mitoplast fraction. The import-processing activity of mitochondria was inhibited by CCCP, oligomycin, or atractyloside in the presence of KCN. These results suggest that the import of sulfite oxidase into mitochondrial intermembrane space requires the participation of inner membrane.  相似文献   

8.
Two enzyme systems carrying out the oxidation of NAD(P)H in the presence of various electron acceptors have been isolated and partially characterized from the supernatant of frozen-thawed mitochondria from Arum maculatum spadices. The two systems contain flavoproteins and differ by their ability to oxidize NADH or NADPH, optimum pH and pI values, sensitivity to Ca2+ and EGTA, denaturation by 4 molar urea, molecular mass, and number of subunits. These properties, together with methodological considerations, are compatible with the location of these enzyme activities on the outer surface of the inner mitochondrial membrane, and support the hypothesis of the existence of two separate dehydrogenases responsible for the mitochondrial oxidation of cytosolic NADH and NADPH.  相似文献   

9.
P Hubert  G Crémel  A Rendon  B Sacko  A Waksman 《Biochemistry》1979,18(14):3119-3126
Mitochondrial aspartate aminotransferase, an enzyme localized on the inner face of the inner mitochondrial membrane, is released into the intermembrane space upon addition of a "movement effector" (succinate, fumarate, pyruvate, or glutamate) [Waksman, A., & Rendon, A. (1974) Biochimie 56, 907-924]. After removal of the movement effector, 90% of the released enzyme rebound to mitoplasts. Lubrol fractionation showed that this bound activity was associated with the inner membrane. Internalization was demonstrated by using both enzymatic and molecular approaches. It was found that 70% of the reassociated enzyme became inaccessible from the outside of the mitoplast either to a nonpermeating substrate (NADH), to mild protease hydrolysis, or to recognition by a specific antibody. In contrast, in inside-out vesicles, the enzyme remained accessible to NADH, protease, and antibodies. Latency measurements performed at different temperatures on whole intact mitochondria confirmed the existence of reversible intermembrane movement of the enzyme in situ.  相似文献   

10.
The permeability of mitochondria to oxaloacetate and malate   总被引:7,自引:7,他引:0  
1. A spectrophotometric assay of the rates of penetration of oxaloacetate and l-malate into mitochondria is described. The assay is based on the measurement of the oxidation of intramitochondrial NADH by oxaloacetate and of the reduction of intramitochondrial NAD+ by malate. 2. The rate of entry of both oxaloacetate and l-malate into mitochondria is restricted, as shown by the fact that disruption of the mitochondrial structure can increase the rate of interaction between the dicarboxylic acids and intramitochondrial NAD+ and NADH by between 100- and 1000-fold. 3. The rates of entry of oxaloacetate and malate into liver, kidney and heart mitochondria increased by up to 50-fold on addition of a source of energy, either ascorbate plus NNNN′-tetramethyl-p-phenylenediamine aerobically, or ATP anaerobically. 4. In the absence of a source of energy the changes in the concentrations of intramitochondrial NAD+ and NADH brought about by the addition of l-malate or oxaloacetate were followed by parallel changes in the concentrations of NADP+ and NADPH, indicating the presence in the mitochondria of an energy-independent transhydrogenase system. 5. The results are discussed in relation to the hypothesis that malate acts as a carrier of reducing equivalents between mitochondria and cytoplasm.  相似文献   

11.
Mitochondria from the muscle of Ascaris lumbricoides var. suis function anaerobically. NADH is generated in the intermembrane space as a consequence of the "malic" enzyme reaction. It has been suggested that this reducing equivalent in the form of hydride ion, would be translocated across the inner membrane in order to mediate ATP generation via the fumarate reductase reaction. In accord with this suggestion, intact Ascaris mitochondria showed appreciable NADH oxidase activity. Sonication resulted in an approximately 2-fold increase in NADH oxidase activity, whereas "malic" enzyme, fumarase, and NADH:NAD+ transhydrogenase activities increased approximately 7- to 14-fold, respectively. Phosphorylation capabilities and permeability toward pyridine nucleotides also indicated the intactness of the mitochondria. Ascaris mitochondria incubated anaerobically in the presence of fumarate, and [14C]NADH catalyzed a rapid reduction of the fumarate to succinate with the concomitant formation of equivalent quantities of extramitochondrial NAD+. However, very little isotope was recovered from the washed mitochondria, indicating the possibility of hydride ion translocation in the absence of nucleotide translocation. NADH:NAD+ transhydrogenase has been isolated from the muscle mitochondria of the intestinal nematode, Ascaris lumbricoides var. suis. The enzyme seems to have been solubilized from the mitochondrial membrane fraction by treatment with sodium deoxycholate followed by dialysis and subsequent adsorption by and elution from alumina C gamma. No NADPH:NAD+ transhydrogenase activity was detectable, making the Ascaris system unique over others reported. Activity was protected by L-cysteine, reduced glutathione and dithioerythritol, but strongly inhibited by low concentrations of p-chloromercuribenzoate or silver nitrate. The thionicotinamide derivative of NAD+ (thioNAD+) was employed to accept hydride ions from NADH in order to assay spectrophotometrically at 398 nm. Apparent Km values for thioNAD+ and NADH were 1 X 10(-4) M and 8 X 10(-6) M, respectively. That the physiological nucleotide, could act as hydride ion acceptor from NADH was indicated by the findings that NAD+ competitively inhibited the reduction of thioNAD+ when assayed at 398 nm. The additional finding of a noncompetitive inhibition between NAD+ and NADH suggested at least two binding sites on the enzyme, one for NADH and another common site for NAD+ and thioNAD+. More conclusive evidence indicating the participation of NAD+ as acceptor was obtained by incubation of the enzyme with NADH and [14C]NAD+ and demonstrating a rapid formation of [14C]NADH. These findings, in conjunction with those discussed above, suggest a physiological function of this enzyme in hydride ion translocation.  相似文献   

12.
The bulk of NADH kinase of Saccharomyces cerevisiae was recovered in the mitochondrial fraction prepared from spheroplasts. Most of the NADH kinase was localized in the inner membrane fraction, which was separated from other mitochondrial components by the combined swelling, shrinking, and sonication procedure. Treatment of mitoplasts with antiserum against the NADH kinase caused inactivation of the enzyme. On the contrary, no influence was observed upon the same treatment of intact mitochondria. p-Chloromercuribenzoate and eosin-5-maleimide inactivated the enzyme without affecting the matrix ATPase. The NADH kinase was enzymatically iodinated in mitoplasts, but not in the intact mitochondria. These results support the conclusion that NADH kinase is localized and functions at the intermembrane space side of the mitochondrial inner membrane. It is evident that the NADH kinase is encoded by nuclear gene(s) because it is synthesized in the presence of chloramphenicol or acriflavine, and a significant amount of the enzyme was detected in mitochondrial DNA-deficient mutants.  相似文献   

13.
A coupled enzyme assay for GlcNAc1: UDP-galactose galactosyltransferase has been developed that allows this enzyme to be assayed spectrophotometrically and in nondenaturing polyacrylamide gels. Utilizing three, intermediate enzymes, galactosyltransferase activity has been coupled to the production of NADH with a stoichiometry of 2 mol of NADH produced for each mol of galactose transferred to GlcNAc. The enzyme reactions coupled to the production of UDP by galactosyltransferase can be summarized as follows:
The activities of partly purified bovine milk galactosyltransferase and galactosyltransferase in dialyzed fetal calf serum have been determined spectrophotometrically by measuring NADH production at 340 nm. The reaction is dependent on N-acetylglucosamine, UDP-galactose, and Mn2+. For both enzyme sources, activities calculated from NADH production are similar to those determined from assays that use radioactive sugar nucleotide substrates. Both galactosyltransferase activities have been localized on 7.5% nondenaturing polyacrylamide gels after electrophoresis by incubating the gel with an agarose indicator gel containing the coupled enzyme system. Enzyme activity is marked by NADH fluorescence, which is dependent on the presence of N-acetylglucosamine in the indicator gel. The intensity of fluorescence increases with increasing galactosyltransferase activity applied to the gel.  相似文献   

14.
15 min cold exposure of rats adapted to cold results in switching on a pathway of the fast oxidation of extramitochondrial NADH in the isolated liver mitochondria. This pathway is sensitive to mersalyl and cyanide, resistant to amytal and antimycin A, and can be stimulated by dinitrophenol. A portion of the endogenous cytochrome c pool can easily be removed by washing mitochondria of the cold-exposed rats.A scheme is discussed, postulating desorption of the inner membrane-bound cytochrome c into intermembrane space of mitochondria, resulting in formation of a link between the non-phosophorylating NADH-cytochrome c reductase in the outer mitochondrial membrane and cytochrome c oxidase in the inner membrane. It is suggested that such an oxidative pathway is involved in the urgent heat production in liver in response to the cold treatment.  相似文献   

15.
Dihydrolipoamide dehydrogenase is a flavoenzyme that reversibly catalyzes the oxidation of reduced lipoyl substrates with the reduction of NAD+ to NADH. In vivo, the dihydrolipoamide dehydrogenase component (E3) is associated with the pyruvate, α-ketoglutarate, and glycine dehydrogenase complexes. The pyruvate dehydrogenase (PDH) complex connects the glycolytic flux to the tricarboxylic acid cycle and is central to the regulation of primary metabolism. Regulation of PDH via regulation of the E3 component by the NAD+/NADH ratio represents one of the important physiological control mechanisms of PDH activity. Furthermore, previous experiments with the isolated E3 component have demonstrated the importance of pH in dictating NAD+/NADH ratio effects on enzymatic activity. Here, we show that a three-state mechanism that represents the major redox states of the enzyme and includes a detailed representation of the active-site chemistry constrained by both equilibrium and thermodynamic loop constraints can be used to model regulatory NAD+/NADH ratio and pH effects demonstrated in progress-curve and initial-velocity data sets from rat, human, Escherichia coli, and spinach enzymes. Global fitting of the model provides stable predictions to the steady-state distributions of enzyme redox states as a function of lipoamide/dihydrolipoamide, NAD+/NADH, and pH. These distributions were calculated using physiological NAD+/NADH ratios representative of the diverse organismal sources of E3 analyzed in this study. This mechanistically detailed, thermodynamically constrained, pH-dependent model of E3 provides a stable platform on which to accurately model multicomponent enzyme complexes that implement E3 from a variety of organisms.  相似文献   

16.
In this article we compare the kinetic behavior toward pyridine nucleotides (NAD+, NADH) of NAD+-malic enzyme, pyruvate dehydrogenase, isocitrate dehydrogenase, α-ketoglutarate dehydrogenase, and glycine decarboxylase extracted from pea (Pisum sativum) leaf and potato (Solanum tuberosum) tuber mitochondria. NADH competitively inhibited all the studied dehydrogenases when NAD+ was the varied substrate. However, the NAD+-linked malic enzyme exhibited the weakest affinity for NAD+ and the lowest sensitivity for NADH. It is suggested that NAD+-linked malic enzyme, when fully activated, is able to raise the matricial NADH level up to the required concentration to fully engage the rotenone-resistant internal NADH-dehydrogenase, whose affinity for NADH is weaker than complex I.  相似文献   

17.
Engineering the level of metabolic cofactors to manipulate metabolic flux is emerging as an attractive strategy for bioprocess applications. We present the metabolic consequences of increasing NADH in the cytosol and the mitochondria of Saccharomyces cerevisiae. In a strain that was disabled in formate metabolism, we either overexpressed the native NAD+-dependent formate dehydrogenase in the cytosol or directed it into the mitochondria by fusing it with the mitochondrial signal sequence encoded by the CYB2 gene. Upon exposure to formate, the mutant strains readily consumed formate and induced fermentative metabolism even under conditions of glucose derepression. Cytosolic overexpression of formate dehydrogenase resulted in the production of glycerol, while when this enzyme was directed into the mitochondria, we observed glycerol and ethanol production. Clearly, these results point toward different patterns of compartmental regulation of redox homeostasis. When pulsed with formate, S. cerevisiae cells growing in a steady state on glucose immediately consumed formate. However, formate consumption ceased after 20 min. Our analysis revealed that metabolites at key branch points of metabolic pathways were affected the most by the genetic perturbations and that the intracellular concentrations of sugar phosphates were specifically affected by time. In conclusion, the results have implications for the design of metabolic networks in yeast for industrial applications.The traditional use of baker''s yeast, Saccharomyces cerevisiae, for ethanol production has resulted in the accumulation of substantial information about its genetics, metabolism, and process development. Consequently, the collection of compounds that are produced using S. cerevisiae has expanded to include organic acids and even secondary metabolites (1, 25, 28). Unlike ethanol, many of these products are not redox neutral relative to commonly used substrates such as glucose. Therefore, in addition to stoichiometry, redox constraints play an important role in the formation of the products. Additional reducing power has to be supplied to produce compounds whose degree of reduction is higher than that of the substrate. On the other hand, producing compounds with a degree of reduction lower than that of the substrate will force the synthesis of other compounds with higher degrees of reduction to compensate for excess reducing power generated from substrate oxidation. These constraints may decrease the product yield substantially.The catabolic currency that balances the degree of reduction between the substrate and the products is usually NADH. In S. cerevisiae, NADH is produced in the cytosol by mainly glyceraldehyde-3-phosphate dehydrogenase and other assimilatory reaction enzymes (35). In the mitochondria, NADH is formed in the tricarboxylic acid (TCA) cycle and the reaction of the pyruvate dehydrogenase complex. Cytosolic NADH is oxidized by the glycerol-3-phosphate shuttle or the external cytosolic NADH dehydrogenases, which are part of the electron transport chain (21). NADH can be transported across the outer mitochondrial membrane (18, 19) but not across the inner mitochondrial membrane (39). Therefore, a dedicated internal mitochondrial NADH dehydrogenase is required to oxidize mitochondrial NADH as part of the electron transport chain (22). The compartmental restriction of NADH oxidation has important ramifications for metabolism and electron transport. The electrons originating from cytosolic NADH are preferred over those originating from mitochondrial NADH (6) for entrance into the electron transport chain. The direct consequence of preferential utilization of cytosolic NADH is a higher redox potential (NADH/NAD+) in the mitochondria than in the cytosol. Consequently, during rapid NADH synthesis, as during exponential growth, the TCA cycle ceases to operate as a cycle and branches into oxidative and reducing pathways (12).Metabolic consequences of the compartmentalization of NADH homeostasis were evident from the difference in the product formation profile upon lowering of cytosolic or mitochondrial NADH. Lowering cytosolic NADH by overexpressing bacterial NADH oxidase lowered the production of glycerol and biomass by S. cerevisiae (14, 36). On the other hand, decreasing the mitochondrial NADH level decreased ethanol production and increased the biomass yield (36). These results are likely to be a combination of effects from alleviating the feedback inhibition of the TCA cycle by mitochondrial NADH and increasing respiratory capacity due to improved efficiency of oxidative phosphorylation, as quantified by the P/O ratio (15). There are no reports that describe the effect of increasing NADH in S. cerevisiae, although formate has been used previously as a source of additional reducing power in S. cerevisiae (2, 4, 11, 23, 24, 27). Formate (HCOO) is efficiently oxidized to CO2 by NAD+-dependent formate dehydrogenase (27) and, therefore, cannot be used as a carbon source for biomass synthesis. Thus, using formate as an auxiliary substrate for the generation of NADH to study the effect of increased NADH may be a feasible option. Given the compartment-dependent regulation of NADH homeostasis in S. cerevisiae (36), increasing the NADH level in the cytosol is likely to elicit a response different from that obtained by increasing the NADH level in the mitochondria.The aim of the present study is to differentiate between the metabolic consequences of increasing NADH in the cytosol and those of increasing NADH in the mitochondria of S. cerevisiae. Toward this aim, we either overexpressed the native Fdh1 (NAD+-dependent formate dehydrogenase) in the cytosol or directed it into the mitochondria in a strain background that is otherwise devoid of formate metabolism. We present our understanding of the physiological characteristics of the mutant strains under steady-state or dynamic conditions in the presence of different levels of formate.  相似文献   

18.

Background

The ratio of NAD+/NADH is a key indicator that reflects the overall redox state of the cells. Until recently, there were no methods for real time NAD+/NADH monitoring in living cells. Genetically encoded fluorescent probes for NAD+/NADH are fundamentally new approach for studying the NAD+/NADH dynamics.

Methods

We developed a genetically encoded probe for the nicotinamide adenine dinucleotide, NAD(H), redox state changes by inserting circularly permuted YFP into redox sensor T-REX from Thermus aquaticus. We characterized the sensor in vitro using spectrofluorometry and in cultured mammalian cells using confocal fluorescent microscopy.

Results

The sensor, named RexYFP, reports changes in the NAD+/NADH ratio in different compartments of living cells. Using RexYFP, we were able to track changes in NAD+/NADH in cytoplasm and mitochondrial matrix of cells under a variety of conditions. The affinity of the probe enables comparison of NAD+/NADH in compartments with low (cytoplasm) and high (mitochondria) NADH concentration. We developed a method of eliminating pH-driven artifacts by normalizing the signal to the signal of the pH sensor with the same chromophore.

Conclusion

RexYFP is suitable for detecting the NAD(H) redox state in different cellular compartments.

General significance

RexYFP has several advantages over existing NAD+/NADH sensors such as smallest size and optimal affinity for different compartments. Our results show that normalizing the signal of the sensor to the pH changes is a good strategy for overcoming pH-induced artifacts in imaging.  相似文献   

19.
The mammalian NUDT13 protein possesses a sequence motif characteristic of the NADH pyrophosphohydrolase subfamily of Nudix hydrolases. Due to the persistent insolubility of the recombinant product expressed in Escherichia coli, active mouse Nudt13 was expressed in insect cells from a baculovirus vector as a histidine-tagged recombinant protein. In vitro, it efficiently hydrolysed NADH to NMNH and AMP and NADPH to NMNH and 2′,5′-ADP and had a marked preference for the reduced pyridine nucleotides. Much lower activity was obtained with other nucleotide substrates tested. K m and k cat values for NADH were 0.34 mM and 7 s?1 respectively. Expression of Nudt13 as an N-terminal fusion to green fluorescent protein revealed that it was targeted exclusively to mitochondria by the N-terminal targeting peptide, suggesting that Nudt13 may act to regulate the concentration of mitochondrial reduced pyridine nucleotide cofactors and the NAD(P)+/NAD(P)H ratio in this organelle and elsewhere. Future studies of the enzymology of pyridine nucleotide metabolism in relation to energy homeostasis, redox control, free radical production and cellular integrity should consider the possible regulatory role of Nudt13.  相似文献   

20.
It is well established that cytochrome c is released from mitochondria when the permeability transition (PT) of this organelle is induced by Ca2+. Our previous study showed that valinomycin also caused the release of cytochrome c from mitochondria but without inducing this PT (Shinohara, Y., Almofti, M. R., Yamamoto, T., Ishida, T., Kita, F., Kanzaki, H., Ohnishi, M., Yamashita, K., Shimizu, S., and Terada, H. (2002) Permeability transition-independent release of mitochondrial cytochrome c induced by valinomycin. Eur. J. Biochem. 269, 5224–5230). These results indicate that cytochrome c may be released from mitochondria with or without the induction of PT. In the present study, we examined the protein species released from valinomycin- and Ca2+-treated mitochondria by LC-MS/MS analysis. As a result, the proteins located in the intermembrane space were found to be specifically released from valinomycin-treated mitochondria, whereas those in the intermembrane space and in the matrix were released from Ca2+-treated mitochondria. These results were confirmed by Western analysis. Furthermore to examine how the protein release occurred, we examined the correlation between the species of released proteins and those of the abundant proteins in mitochondria. Consequently most of the proteins released from mitochondria treated with either agent were highly expressed proteins in mitochondria, indicating that the release occurred not selectively but in a manner dependent on the concentration of the proteins. Based on these results, the permeabilization effects of Ca2+ and valinomycin on the inner and outer mitochondrial membranes are discussed.Mitochondria are well known as the organelle for energy conversion in all eukaryotes. This energy conversion, i.e. ATP synthesis, is performed by using the electrochemical gradient of H+ across the inner mitochondrial membrane. To enable effective energy conversion, the mitochondrial inner membrane is highly resistant to the permeation of solutes and ions. However, under certain conditions, such as in the presence of Ca2+ and inorganic phosphate, the permeability of this inner membrane is known to be markedly increased. This phenomenon is referred to as the permeability transition (PT)1 and is believed to result from the formation of a proteinaceous pore, referred to as the PT pore, which makes the inner membrane permeable to various solutes and ions smaller than 1.5 kDa (13). The physiological importance of the PT has long been uncertain; however, recent studies have revealed that the changes in the permeability of the inner mitochondrial membrane due to the induction of PT cause the release of cytochrome c into the cytosol and that the released cytochrome c then triggers subsequent steps of programmed cell death, which is known as apoptosis (46). Thus, the PT is considered to be one of the major regulatory steps of apoptosis. However, the questions as to how the PT is induced and how cytochrome c is released accompanied by the induction of PT have remained unanswered.To characterize the features of the mitochondrial PT and to understand the mechanism underlying the release of cytochrome c from mitochondria, investigators have studied the effects of various agents on this organelle. As a result, the PT and the release of cytochrome c were found to be induced not only by Ca2+ but also by other agents (79). We also found that copper-o-phenanthroline (10), metal ions (11), and cyanine dyes (12, 13) induced this PT and the release of cytochrome c from mitochondria. Furthermore we reported that valinomycin, known as a potassium-selective ionophore, also induces the release of cytochrome c from mitochondria but without the induction of PT (14). This finding indicated that cytochrome c could be released from mitochondria in two different manners: one with the induction of PT and the other without it. To understand how cytochrome c is released from mitochondria, it is very important to know what protein species are released from mitochondria concomitant with the release of cytochrome c. To address these questions, in the present study we used a mass spectrometry (LC-MS/MS system)-based proteome analysis approach, which allowed us to identify the protein species present in a limited amount of protein samples. Using proteomics techniques, we examined the protein species released from mitochondria treated with valinomycin or with Ca2+, and we discuss our findings on the status of inner and outer mitochondrial membranes treated with these agents.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号