首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Drinking water quality management requires early warning tools which enable water supply companies to detect quickly and to forecast degradation of the microbial quality of drinking water during its transport throughout distribution systems. This study evaluated the feasibility of assessing, in real time, drinking water biostability by monitoring in situ the evolution of the attenuated total reflectance-Fourier transform infrared (ATR-FTIR) fingerprint of a nascent reference biofilm exposed to water being tested. For this purpose, the responses of nascent Pseudomonas fluorescens biofilms to variations in the dissolved organic carbon (DOC) level in tap water were monitored in situ and in real time by ATR-FTIR spectroscopy. Nascent P. fluorescens biofilms consisting of a monolayer of bacteria were formed on the germanium crystal of an ATR flowthrough cell by pumping bacterial suspensions in Luria-Bertani (LB) medium through the cell. Then they were exposed to a continuous flow of dechlorinated sterile tap water supplemented with appropriate amounts of sterile LB medium to obtain DOC concentrations ranging from 1.5 to 11.8 mg/liter. The time evolution of infrared bands related to proteins, polysaccharides, and nucleic acids clearly showed that changes in the DOC concentration resulted in changes in the nascent biofilm ATR-FTIR fingerprint within 2 h after exposure of the biofilm to the water being tested. The initial bacterial attachment, biofilm detachment, and regrowth kinetics determined from changes in the areas of bands associated with proteins and polysaccharides were directly dependent on the DOC level. Furthermore, they were consistent with bacterial adhesion or growth kinetic models and extracellular polymeric substance overproduction or starvation-dependent detachment mechanisms.  相似文献   

2.
Summary The aim of this paper was to evaluate the possible enhancement of the biocidal efficacy of glutaraldehyde against Pseudomonas fluorescens biofilms by the application of an electric field. The behaviour of sessile cells and cells released by the biofilms was assed. Biofilms were formed on thin stainless steel coupons immersed in culture media inoculated with Pseudomonas fluorescens. Treatments using glutaraldehyde (TGA) and both glutaraldehyde and electric field application (TGAEF) were carried out with the samples with biofilms. TGA: samples with biofilms were immersed in glass cells containing a buffer solution with different glutaraldehyde concentrations in the 25–500 ppm range. TGAEF: samples with biofilms were immersed in an electrochemical cell containing glutaraldehyde solution where a direct electric current (4 × 10−4 A cm−2) was delivered to the chamber. The evolution of biofilms was observed through optical microscopy at real time. Results show that the electric field enhanced glutaraldehyde efficacy reducing the number of surviving cells in the range of one to four orders with respect to those with TGA treatment. The sensitivity of the cells to the treatments decreased in the following order: planktonic cells > cells released by the biofilm > sessile cells.  相似文献   

3.
Direct analysis of the colonised surface on coal using attenuated total reflectance–Fourier transform infrared spectroscopy (ATR-FTIR) revealed the nature of bacteria-mediated oxidation at the coal surface. Unique oxidation peaks generated by the presence of Pseudomonas fluorescens on coal was shown through ATR-FTIR measurements, and ATR-FTIR imaging illustrated that this peak was only observed within the region of coal colonised by bacteria. Contact angle measurements and surface free energy of adhesion calculations showed that the adhesion between P. fluorescens and coal was thermodynamically favourable, and scanning electron microscopy (SEM) exhibited individual cell or monolayer cluster attachment on coal. Furthermore, Gaussian peak fitting of peroxidase-treated coal ATR-FTIR spectra revealed that peroxidase or related enzymes produced by P. fluorescens may be responsible for coal oxidation. This study demonstrated the usefulness and practicality of ATR-FTIR for analysing coal oxidation by P. fluorescens and may well be applied to other microbe-driven modifications of coal for its rapidity and reliability.  相似文献   

4.
【目的】采后柑橘极易受指状青霉(Penicillium digitatum)侵染而发生严重的绿霉病腐烂,生物防治因具有安全、有效、环保等特点近年来备受关注。论文旨在研究荧光假单胞菌(Pseudomonas fluorescens)ZX对采后柑橘绿霉病的防治效果,揭示P.fluorescensZX对P.digitatum可能存在的作用机制。【方法】以"北碚447"锦橙果实为试材,先分别接种20μL拮抗菌培养液、滤液(培养液离心后,上清经0.22μm滤膜过滤)、菌悬液(培养液离心后,菌体用无菌水反复洗涤并用无菌水重悬)和热杀死液(培养液高温高压灭菌),2 h后接种20μL P. digitatum孢子悬浮液(1×10~4spores/m L),所有果实于20oC、90%相对湿度环境下恒温恒湿培养8 d后,测定果实的发病率和病斑直径;制备柑橘皮培养基,进行平板抑菌试验,探索P. fluorescens ZX对P. digitatum孢子发芽情况的影响;采用两板对扣法和生物熏蒸法研究P.fluorescensZX挥发性次级代谢产物的抑菌作用;利用插入式细胞培养皿等分析P.fluorescensZX和P.digitatum之间竞争的营养物质;同时,测定P.fluorescensZX的生长曲线,利用结晶紫染色法评估P. fluorescens ZX的生物膜形成能力。【结果】P. fluorescens ZX不同处理液之间对采后锦橙绿霉病的作用效果差异显著,菌悬液抑菌效果最好,经菌悬液处理的果实,发病率和病斑直径分别仅为40.83%和1.78 cm;不论是在柑橘皮固体培养基上对峙培养还是在液体培养基中混合培养,菌悬液和原液的作用效果较好,固体平板上,相对抑制率达到了35%–45%,液体培养基中,P. digitatum孢子12 h后的发芽率不超过27%;P. fluorescens ZX产生的挥发性物质具有抑菌作用,经P. fluorescensZX熏蒸处理的锦橙果实,发病率和病斑直径都显著降低;营养竞争试验结果表明,P. fluorescens ZX能更快速有效地消耗柑橘皮培养基中的营养,并和P. digitatum竞争葡萄糖、果糖、蔗糖、天冬氨酸、苏氨酸、丝氨酸、亮氨酸、精氨酸和脯氨酸等营养物质;同时,P. fluorescens ZX生命力强,培养4 h后即进入对数生长期,约24 h后形成成熟的生物膜。【结论】P. fluorescens ZX可能通过抑制P. digitatum孢子发芽、营养与空间竞争、形成生物膜、产生抑菌物质等方式抑制P.digitatum的生长繁殖,有效防治采后锦橙绿霉病。  相似文献   

5.
Motility is a key trait for rhizosphere colonization by Pseudomonas fluorescens. Mutants with reduced motility are poor competitors, and hypermotile, more competitive phenotypic variants are selected in the rhizosphere. Flagellar motility is a feature associated to planktonic, free‐living single cells, and although it is necessary for the initial steps of biofilm formation, bacteria in biofilm lack flagella. To test the correlation between biofilm formation and rhizosphere colonization, we have used P. fluorescens F113 hypermotile derivatives and mutants affected in regulatory genes which in other bacteria modulate biofilm development, namely gacS (G), sadB (S) and wspR (W). Mutants affected in these three genes and a hypermotile variant (V35) isolated from the rhizosphere were impaired in biofilm formation on abiotic surfaces, but colonized the alfalfa root apex as efficiently as the wild‐type strain, indicating that biofilm formation on abiotic surfaces and rhizosphere colonization follow different regulatory pathways in P. fluorescens. Furthermore, a triple mutant gacSsadBwspR (GSW) and V35 were more competitive than the wild‐type strain for root‐tip colonization, suggesting that motility is more relevant in this environment than the ability to form biofilms on abiotic surfaces. Microscopy showed the same root colonization pattern for P. fluorescens F113 and all the derivatives: extensive microcolonies, apparently held to the rhizoplane by a mucigel that seems to be plant produced. Therefore, the ability to form biofilms on abiotic surfaces does not necessarily correlates with efficient rhizosphere colonization or competitive colonization.  相似文献   

6.

Glutaraldehyde (GTA) is a widely used biocide due to its high effectiveness. The experimental work reported here was carried out to assess the effectiveness of GTA in controlling biofilms formed by Pseudomonas fluorescens on stainless steel slides, and to compare efficacy against both planktonic and sessile micro‐rganisms. The tests were performed using two concentrations of GTA (50 and 100mg 1‐1), biofilms of two ages (7 and 15 d), several pH values (5,7 and 9) and a range of exposure times (from 0 (control) to 1,3,7 and 24 h). The action of GTA on biofilm and planktonic populations was assessed by means of activity tests, zeta potential, and the wet weight of the biofilms. Biofilms were not completely removed after treatment with GTA in any of the conditions studied. The higher GTA concentration was more effective in reducing the bacterial activity of the biofilm. The biocide proved to be more effective for longer exposure times. GTA showed good antimicrobial activity against P. fluorescens in suspension, with higher activity at pH 9. The findings of this study suggest that when GTA is used to control biofilms, it reacts with one of the components of the matrix, the proteins, thereby reducing its antimicrobial action.  相似文献   

7.
Abstract

The effects of dual species interactions on biofilm formation by Aeromonas hydrophila in the presence of Pseudomonas aeruginosa, Pseudomonas fluorescens, Pectobacterium carotovorum, Salmonella Typhimurium, and Listeria monocytogenes were examined. High-performance liquid chromatography and liquid-chromatography-mass spectrometry were performed to identify N-acyl homoserine lactone (AHL) molecules secreted by monocultures and dual cultures grown in crab broth. Field emission scanning electron microscopy was performed to observe attachment and biofilm formation. P. aeruginosa and P. fluorescens inhibited biofilm formation by A. hydrophila on the crab surface, without affecting their own biofilm-forming abilities. Dual biofilms of S. Typhimurium, L. monocytogenes, or P. carotovorum did not affect A. hydrophila biofilm formation. Exoprotease, AHL, and AI-2 levels were significantly reduced in dual cultures of P. aeruginosa and P. fluorescens with A. hydrophila, supporting the relationship between quorum sensing and biofilm formation. Dual-species biofilms were studied in their natural environment and in the laboratory.  相似文献   

8.
Glutaraldehyde (GLUT) was evaluated for control of single and dual species biofilms of Bacillus cereus and Pseudomonas fluorescens on stainless steel surfaces using a chemostat system. The biofilms were characterized in terms of mass, cell density, total and matrix proteins and polysaccharides. The control action of GLUT was assessed in terms of inactivation and removal of biofilm. Post-biocide action was characterized 3, 7, 12, 24, 48 and 72 h after treatment. Tests with planktonic cells were also performed for comparison. The results demonstrated that in dual species biofilms the metabolic activity, cell density and the content of matrix proteins were higher than those of either single species. Planktonic B. cereus was more susceptible to GLUT than P. fluorescens. The biocide susceptibility of dual species planktonic cultures was an average of each single species. Planktonic cells were more susceptible to GLUT than their biofilm counterparts. Biofilm inactivation was similar for both of the single biofilms while dual biofilms were more resistant than single species biofilms. GLUT at 200 mg l?1 caused low biofilm removal (<10%). Analysis of the post-biocide treatment data revealed the ability of biofilms to recover their activity over time. However, 12 h after biocide application, sloughing events were detected for both single and dual species biofilms, but were more marked for those formed by P. fluorescens (removal >40% of the total biofilm). The overall results suggest that GLUT exerts significant antimicrobial activity against planktonic bacteria and a partial and reversible activity against B. cereus and P. fluorescens single and dual species biofilms. The biocide had low antifouling effects when analysed immediately after treatment. However, GLUT had significant long-term effects on biofilm removal, inducing significant sloughing events (recovery in terms of mass 72 h after treatment for single biofilms and 42 h later for dual biofilms). In general, dual species biofilms demonstrated higher resistance and resilience to GLUT exposure than either of the single species biofilms. P. fluorescens biofilms were more susceptible to the biocide than B. cereus biofilms.  相似文献   

9.
This study investigated the physiology and behaviour following treatment with ortho-phthalaldehyde (OPA), of Pseudomonas fluorescens in both the planktonic and sessile states. Steady-state biofilms and planktonic cells were collected from a bioreactor and their extracellular polymeric substances (EPS) were extracted using a method that did not destroy the cells. Cell structure and physiology after EPS extraction were compared in terms of respiratory activity, morphology, cell protein and polysaccharide content, and expression of the outer membrane proteins (OMP). Significant differences were found between the physiological parameters analysed. Planktonic cells were more metabolically active, and contained greater amounts of proteins and polysaccharides than biofilm cells. Moreover, biofilm formation promoted the expression of distinct OMP. Additional experiments were performed with cells after EPS extraction in order to compare the susceptibility of planktonic and biofilm cells to OPA. Cells were completely inactivated after exposure to the biocide (minimum bactericidal concentration, MBC = 0.55 ± 0.20 mM for planktonic cells; MBC = 1.7 ± 0.30 mM for biofilm cells). After treatment, the potential of inactivated cells to recover from antimicrobial exposure was evaluated over time. Planktonic cells remained inactive over 48 h while cells from biofilms recovered 24 h after exposure to OPA, and the number of viable and culturable cells increased over time. The MBC of the recovered biofilm cells after a second exposure to OPA was 0.58 ± 0.40 mM, a concentration similar to the MBC of planktonic cells. This study demonstrates that persister cells may survive in biocide-treated biofilms, even in the absence of EPS.  相似文献   

10.
Most biofilm studies employ single species, yet in nature biofilms exist as mixed cultures, with inevitable effects on growth and development of each species present. To investigate how related species of bacteria interact in biofilms, two Pseudomonas spp., Pseudomonas fluorescens and Pseudomonas putida, were cultured in capillary bioreactors and their growth measured by confocal microscopy and cell counting. When inoculated in pure culture, both bacteria formed healthy biofilms within 72?h with uniform coverage of the surface. However, when the bioreactors were inoculated with both bacteria simultaneously, P. putida was completely dominant after 48?h. Even when the inoculation by P. putida was delayed for 24?h, P. fluorescens was eliminated from the capillary within 48?h. It is proposed that production of the lipopeptide putisolvin by P. putida is the likely reason for the reduction of P. fluorescens. Putisolvin biosynthesis in the dual-species biofilm was confirmed by mass spectrometry.  相似文献   

11.
Abstract The ability of microorganisms to form biofilms has been well documented. Bacterial cells make a transition from a planktonic state to a sessile state, replicate, and subsequently populate a surface. In this study, organisms that initially colonize a ``clean' surface are referred to as ``primary' biofilm cells. The progeny of the first generation of sessile cells are known as ``secondary' biofilm cells. This study examined the growth of planktonic, primary, and secondary biofilm cells of a green fluorescent protein producing (GFP+) Pseudomonas aeruginosa PA01. Biofilm experiments were performed in a parallel plate flow cell reactor with a glass substratum. Individual cells were tracked over time using a confocal scanning laser microscope (CSLM). Primary cells experience a lag in their growth that may be attributed to adapting to a sessile environment or undergoing a phenotypic change. This is referred to as a surface associated lag time. Planktonic and secondary biofilm cells both grew at a faster rate than the primary biofilm cells under the same nutrient conditions. Received: 17 September 1999; Accepted: 13 January 2000; Online Publication: 25 April 2000  相似文献   

12.
Planktonic bacteria passing to a sessile state during the formation of a biofilm undergo many gene expression and phenotypic changes. These transformations require a significant time to establish. Inversely, cells extracted from a biofilm should also require a significant time before acquiring the same physiological characteristics as planktonic cells. Relatively few studies have addressed the kinetics of this inverse transformation process. We tested one aspect, namely, the contamination potential of freshly extracted Escherichia coli biofilm cells, precultured in a synthetic medium, in a rich liquid growth medium. We compared the time between inoculation and the beginning of the growth phase of freshly extracted biofilm cells, and suspended exponential and suspended stationary phase cells precultured in the same synthetic medium. Unexpectedly, the lag time for the extracted biofilm cells was the same as the lag time of the suspended exponential phase cells and significantly less than the lag time of the suspended stationary phase cells. The lag times were determined by an impedance technique. Cells extracted from biofilms, i.e., biofilms formed in canalizations and broken up by hydrodynamic forces, are an important source of contamination. Our work shows, in the case of E. coli, the high potential of freshly extracted biofilm cells to reinfect a new medium.  相似文献   

13.
The aim of this study was to analyze the cleaning efficiency of polysaccharidases and proteolytic enzymes against biofilms of bacterial species found in food industry processing lines and to study enzyme effects on the composition of extracellular polymeric substances (EPS) and biofilm removal in a Clean-in-Place (CIP) procedure. The screening of 7 proteases and polysaccharidases for removal of biofilms of 16 bacterial species was first evaluated using a microtiter plate assay. The alkaline pH buffer removed more biofilm biomass as well as affecting a larger range of bacterial species. The two serine proteases and α-amylase were the most efficient enzymes. Proteolytic enzymes promoted biofilm removal of a larger range of bacterial species than polysaccharidases. Using three isolates derived from two bacterial species widely found in food processing lines (Pseudomonas fluorescens and the Bacillus cereus group), biofilms were developed on stainless steel slides and enzymatic solutions were used to remove the biofilms using CIP procedure. Serine proteases were more efficient in removing cells of Bacillus biofilms than polysaccharidases. However, polysaccharidases were more efficient in removing P. fluorescens biofilms than serine proteases. Solubilization of enzymes with a buffer containing surfactants, and dispersing and chelating agents enhanced the efficiency of polysaccharidases and proteases respectively in removing biofilms of Bacillus and P. fluorescens. A combination of enzymes targeting several components of EPS, surfactants, dispersing and chelating agents would be an efficient alternative to chemical cleaning agents.  相似文献   

14.

Background  

Explaining public-goods cooperation is a challenge for evolutionary biology. However, cooperation is expected to more readily evolve if it imposes a smaller cost. Such costs of cooperation are expected to decline with increasing resource supply, an ecological parameter that varies widely in nature. We experimentally tested the effect of resource supply on the evolution of cooperation using two well-studied bacterial public-good traits: biofilm formation by Pseudomonas fluorescens and siderophore production by Pseudomonas aeruginosa.  相似文献   

15.

Three different types of biocides, viz. formaldehyde (FM), glutaraldehyde (GA) and isothiozolone (ITZ) were used to control planktonic and sessile populations of two marine isolates of sulphate‐reducing bacteria (SRB). The influence of these biocides on the initial attachment of cells to mild steel surfaces, on subsequent biofilm formation and on the activity of hydrogenase enzymes within developed biofilms was evaluated. In the presence of biocides the rate and degree of colonization of mild steel by SRB depended on incubation time, bacterial isolate and the type of biocide used. Although SRB differed in their susceptibility to biocides, for all isolates the biofilm population was more resistant to the treatment than the planktonic population. GA showed highest efficiency in controlling planktonic and sessile SRB compared with the other two biocides. The activity of the enzyme hydrogenase measured in SRB biofilms varied between isolates and with the biocide treatment. No correlation was found between the number of sessile cells and hydrogenase activity.  相似文献   

16.
Efficient symbiotic colonization of the squid Euprymna scolopes by the bacterium Vibrio fischeri depends on bacterial biofilm formation on the surface of the squid’s light organ. Subsequently, the bacteria disperse from the biofilm via an unknown mechanism and enter through pores to reach the interior colonization sites. Here, we identify a homolog of Pseudomonas fluorescens LapG as a dispersal factor that promotes cleavage of a biofilm-promoting adhesin, LapV. Overproduction of LapG inhibited biofilm formation and, unlike the wild-type parent, a ΔlapG mutant formed biofilms in vitro. Although V. fischeri encodes two putative large adhesins, LapI (near lapG on chromosome II) and LapV (on chromosome I), only the latter contributed to biofilm formation. Consistent with the Pseudomonas Lap system model, our data support a role for the predicted c-di-GMP-binding protein LapD in inhibiting LapG-dependent dispersal. Furthermore, we identified a phosphodiesterase, PdeV, whose loss promotes biofilm formation similar to that of the ΔlapG mutant and dependent on both LapD and LapV. Finally, we found a minor defect for a ΔlapD mutant in initiating squid colonization, indicating a role for the Lap system in a relevant environmental niche. Together, these data reveal new factors and provide important insights into biofilm dispersal by V. fischeri.  相似文献   

17.
Population dynamics was studied in a 52-l biotrickling filter (BTF) operated for 182 days and used to clean air contaminated with styrene vapors. In the BTF, biomass grew either as free-floating (planktonic) or attached (sessile) microorganisms. PCR-amplified 16S rDNA fragments from planktonic and sessile cells within the bioreactor were analyzed using denaturing gradient gel electrophoresis (DGGE). The results indicated that the complexity of biofilm community was always more pronounced than the complexity of the planktonic cell community. Notably, Rhodococcus erythropolis was identified, based on DNA sequence analysis, as one of the biofilm-specific strains. It was also shown that the inoculum, even when enriched with styrene-degrading bacteria, was not adapted to the growth conditions imposed by the BTF. After a 35-day microbial acclimation period, the DGGE analysis also showed less variation in the banding pattern representing the microbial complexity of the biofilm. In addition, the phylogenic fingerprinting method used demonstrated similar banding profiles in the biofilm along the filter bed. Electronic Publication  相似文献   

18.
Liu  Musang  Zheng  Hailin  Zeng  Rong  Liang  Guanzhao  Zheng  Nan  Liu  Weida 《Mycopathologia》2021,186(3):387-397

Aspergillus fumigatus (A. fumigatus) is the most common airborne opportunistic fungal pathogen. Biofilm formation is one of the main pathogenic mechanisms of A. fumigatus. During the past decades, A. fumigatus azole resistance has become prevalent due to the medical and agricultural use of antifungal drugs and fungicides. Until now, the role of fungal biofilms in azole resistance of A. fumigatus remains unclear. In the present study, we compared biofilm drug susceptibility and biofilm formation under itraconazole of azole-resistant strains, sensitive strains, and standard strains, separately. The biofilm viability and matrix thickness at the early and the late stage were measured by XTT assay and Calcofluor white. Our results showed that the sessile minimum inhibitory concentration of itraconazole, which describing the inhibition of drugs on fungi sessile with biofilm, was much higher than the traditional minimal inhibitory concentration of itraconazole. Additionally, low concentrations of itraconazole inhibited biofilm formation of A. fumigatus strains. Notably, biofilm formation by azole-resistant strains could not be inhibited by high concentrations of itraconazole but could be effectively restrained by low concentrations of micafungin, revealing the efficacy of a cell-wall inhibitor to disrupt A. fumigatus biofilm formation. However, late-stage biofilms of both azole-resistant strains and standard strains were hard to disrupt using itraconazole. We found that itraconazole was effective to prevent A. fumigatus biofilm formation at the early stage. For the treatment of A. fumigatus biofilm, our findings suggest that an early-stage preventive strategy is preferred and micafungin is effective to control the azole-resistant strain infection.

  相似文献   

19.
Drinking water quality management requires early warning tools which enable water supply companies to detect quickly and to forecast degradation of the microbial quality of drinking water during its transport throughout distribution systems. This study evaluated the feasibility of assessing, in real time, drinking water biostability by monitoring in situ the evolution of the attenuated total reflectance-Fourier transform infrared (ATR-FTIR) fingerprint of a nascent reference biofilm exposed to water being tested. For this purpose, the responses of nascent Pseudomonas fluorescens biofilms to variations in the dissolved organic carbon (DOC) level in tap water were monitored in situ and in real time by ATR-FTIR spectroscopy. Nascent P. fluorescens biofilms consisting of a monolayer of bacteria were formed on the germanium crystal of an ATR flowthrough cell by pumping bacterial suspensions in Luria-Bertani (LB) medium through the cell. Then they were exposed to a continuous flow of dechlorinated sterile tap water supplemented with appropriate amounts of sterile LB medium to obtain DOC concentrations ranging from 1.5 to 11.8 mg/liter. The time evolution of infrared bands related to proteins, polysaccharides, and nucleic acids clearly showed that changes in the DOC concentration resulted in changes in the nascent biofilm ATR-FTIR fingerprint within 2 h after exposure of the biofilm to the water being tested. The initial bacterial attachment, biofilm detachment, and regrowth kinetics determined from changes in the areas of bands associated with proteins and polysaccharides were directly dependent on the DOC level. Furthermore, they were consistent with bacterial adhesion or growth kinetic models and extracellular polymeric substance overproduction or starvation-dependent detachment mechanisms.  相似文献   

20.
Cyclic di-GMP (c-di-GMP) is a broadly conserved, intracellular second-messenger molecule that regulates biofilm formation by many bacteria. The synthesis of c-di-GMP is catalyzed by diguanylate cyclases (DGCs) containing the GGDEF domain, while its degradation is achieved through the phosphodiesterase activities of EAL and HD-GYP domains. c-di-GMP controls biofilm formation by Pseudomonas fluorescens Pf0-1 by promoting the cell surface localization of a large adhesive protein, LapA. LapA localization is regulated posttranslationally by a c-di-GMP effector system consisting of LapD and LapG, which senses cytoplasmic c-di-GMP and modifies the LapA protein in the outer membrane. Despite the apparent requirement for c-di-GMP for biofilm formation by P. fluorescens Pf0-1, no DGCs from this strain have been characterized to date. In this study, we undertook a systematic mutagenesis of 30 predicted DGCs and found that mutations in just 4 cause reductions in biofilm formation by P. fluorescens Pf0-1 under the conditions tested. These DGCs were characterized genetically and biochemically to corroborate the hypothesis that they function to produce c-di-GMP in vivo. The effects of DGC gene mutations on phenotypes associated with biofilm formation were analyzed. One DGC preferentially affects LapA localization, another DGC mainly controls swimming motility, while a third DGC affects both LapA and motility. Our data support the conclusion that different c-di-GMP-regulated outputs can be specifically controlled by distinct DGCs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号