首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
New Caledonia is well known as a hot spot of biodiversity whose origin as a land mass can be traced back to the Gondwanan supercontinent. The local flora and fauna, in addition to being remarkably rich and endemic, comprise many supposedly relictual groups. Does the New Caledonian biota date back to Gondwanan times, building up its richness and endemism over 100 Myr or does it result from recent diversifications after Tertiary geological catastrophic events? Here we use a molecular phylogenetic approach to answer this question with the study of the Neocaledonian cockroach genus Angustonicus belonging to the subfamily Tryonicinae from Australia and New Caledonia. Both geological and molecular dating show that the diversification of this group is less than two million years old, whatever the date of its origin itself. This dating is not consistent with hypotheses of Gondwanan richness and endemism in New Caledonian biota. In other terms, local richness and endemism at the specific level are not necessarily related to an old Gondwanan origin of the Neocaledonian groups. © The Willi Hennig Society 2005.  相似文献   

2.
The grasshopper genus Caledonula, endemic to New Caledonia, was studied to understand the evolution of species distributions in relation to climate and soil types. Based on a comprehensive sampling of 80 locations throughout the island, the genus was represented by five species, four of which are new to science, of which three are described here. All the species have limited distributions in New Caledonia. Bioclimatic niche modelling shows that all the species were found in association with a wet climate and reduced seasonality, explaining their restriction to the southern half of the island. The results suggest that the genus was ancestrally constrained by seasonality. A molecular phylogeny was reconstructed using two mitochondrial and two nuclear markers. The partially resolved tree showed monophyly of the species found on metalliferous soils, and molecular dating indicated a rather recent origin for the genus. Adaptation to metalliferous soils is suggested by both morphological changes and radiation on these soils. The genus Caledonula is therefore a good model to understand the origin of microendemism in the context of recent and mixed influences of climate and soil type.  相似文献   

3.
Aim A New Caledonian insect group was studied in a world‐wide phylogenetic context to test: (1) whether local or regional island clades are older than 37 Ma, the postulated re‐emergence time of New Caledonia; (2) whether these clades show evidence for local radiations or multiple colonizations; and (3) whether there is evidence for relict taxa with long branches in phylogenetic trees that relate New Caledonian species to geographically distant taxa. Location New Caledonia, south‐west Pacific. Methods We sampled 43 cricket species representing all tribes of the subfamily Eneopterinae and 15 of the 17 described genera, focusing on taxa distributed in the South Pacific and around New Caledonia. One nuclear and three mitochondrial genes were analysed using Bayesian and parsimony methods. Phylogenetic divergence times were estimated using a relaxed clock method and several calibration criteria. Results The analyses indicate that, under the most conservative dating scenario, New Caledonian eneopterines are 5–16 million years old. The largest group in the Pacific region dates to 18–29 Ma. New Caledonia has been colonized in two phases: the first around 10.6 Ma, with the subsequent diversification of the endemic genus Agnotecous, and the second with more recent events around 1–4 Ma. The distribution of the sister group of Agnotecous and the lack of phylogenetic long branches in the genus refute an assumption of major extinction events in this clade and the hypothesis of local relicts. Main conclusions Our phylogenetic studies invalidate a simple scenario of local persistence of this group in New Caledonia since 80 Ma, either by survival on the New Caledonian island since its rift from Australia, or, if one accepts the submergence of New Caledonia, by local island‐hopping among other subaerial islands, now drowned, in the region during periods of New Caledonian submergence.  相似文献   

4.
Abstract The present study uses differences among frugivore faunas of the southern hemisphere landmasses to test whether frugivore characteristics have influenced the evolution of fruit traits. Strong floristic similarities exist among southern landmasses; for example, 75% of New Zealand vascular plant genera also have species in Australia. However, plants in Australia and South America have evolved in the presence of a range of mammalian frugivores, whereas those in New Zealand, New Caledonia and the Pacific Islands have not. In addition, the avian frugivores in New Zealand and New Caledonia are generally smaller than those of Australia. If frugivore characteristics have influenced the evolution of fruit traits, predictable differences should exist between southern hemisphere fruits, particularly fruit size and shape. Fruit dimensions were measured for 77 New Zealand species and 31 Australian species in trans‐Tasman genera. New Zealand fruits became significantly more ellipsoid in shape with increasing size. This is consistent with frugivore gape size imposing a selective pressure on fruit ingestability. This result is not a product of phylogenetic correlates, as fruit length and width scaled isometrically for Australian species in genera shared with New Zealand. Within‐genus contrasts between New Zealand and Australian species in 20 trans‐Tasman genera showed that New Zealand species have significantly smaller fruits than their Australian counterparts. Within‐genus contrasts between New Zealand and South American species in nine genera gave the same result; New Zealand species had significantly smaller fruits than their South American counterparts. No difference was found in fruit size or shape between New Zealand and New Caledonia congeneric species from 12 genera. These results are consistent with the broad characteristics of the frugivore assemblage influencing the evolution of fruit size and shape in related species. The smaller‐sized New Zealand frugivore assemblage has apparently influenced the evolution of fruit size of colonizing taxa sometimes within a relatively short evolutionary timeframe.  相似文献   

5.
The patterns of local endemism in New Caledonia were analysed in two endemic genera of Tingidae (Insecta, Heteroptera), Cephalidiosus and Nobarnus , through a phylogenetic analysis and species' distribution modelling. The aim was to determine the possible causes of diversification and endemism in New Caledonia. Our results show that environmental conditions are probably important for the distribution of the genus Cephalidiosus , in conjunction with other factors such as resource (host plant) distribution, but suggest that the same environmental conditions have not influenced the speciation processes and diversification in the genus.  © 2009 The Linnean Society of London, Biological Journal of the Linnean Society , 2009, 97 , 177–184.  相似文献   

6.
The Oceanian plant genus Spiraeanthemum (Cunoniaceae) has a centre of diversity in New Caledonia, where it is represented by seven species. Its diversification was investigated using two low‐copy nuclear genes, ncpGS and GapC, and phylogenetic analyses were based on maximum parsimony, maximum likelihood and recombination networks. We detected several cases of gene recombination in both datasets, and these have obscured the history within the genus. For S. ellipticum and S. pubescens, accessions from southern populations on ultramafic soils were genetically distinct from accessions from northern populations on non‐ultramafic soils. Given that no obvious morphological characters distinguish northern and southern populations in either taxon, both may be considered as examples of cryptic species. Incongruence between gene trees and species' delimitation may be explained by the parallel evolution of similar morphology, differential lineage sorting leading to differential fixation of alleles or different introgression patterns in the north and south leading to allele displacement. In New Caledonia, some species with broad ecological preferences may thus be artificial concepts. This suggests that they should be treated more critically in monographs and that the species' richness of the New Caledonian flora may be underestimated. Problems associated with the typification of S. ellipticum and evidence of hybridization events in the history of Spiraeanthemum are also discussed. © 2009 The Linnean Society of London, Botanical Journal of the Linnean Society, 2009, 161 , 137–152.  相似文献   

7.
The biogeographical paradigm of New Caledonia has recently changed. Although this island is now considered by many as oceanic, its study is still often impeded by some old misconceptions concerning either regional geology or phylogenetic analysis of evolution and biogeography. I discuss ten points that I feel are especially detrimental, to help focus on the real debate and the real questions: (1) its geological history cannot be understood from the basement only; (2) the island submergence was not due simply to sea‐level variation; (3) Zealandia/Tasmantis is not a lost continent; (4) short‐distance dispersal is not equivalent to permanence on land; (5) long‐distance dispersal is not the sole event opposing vicariance, but short‐distance dispersal as well; (6) the occurrence of relicts does not prove biota permanence; (7) a major fault system was not observed in New Caledonia; (8) terranes are not rafts; (9) forest climatic refuges do not necessarily equate to centres of endemism or centres of diversity; and (10) New Caledonia is not only a sink but also a source. Study of New Caledonia will need to focus on old and non‐relict clades and there is a need to improve the local fossil record.  相似文献   

8.
Few studies have focused on the early colonization of New Caledonia by insects, after the re-emergence of the main island, 37 Myr ago. Here we investigate the mode and tempo of evolution of a new endemic cricket genus, Pixibinthus, recently discovered in southern New Caledonia. First we formally describe this new monotypic genus found exclusively in the open shrubby vegetation on metalliferous soils, named ‘maquis minier’, unique to New Caledonia. We then reconstruct a dated molecular phylogeny based on five mitochondrial and four nuclear loci in order to establish relationships of Pixibinthus within Eneopterinae crickets. Pixibinthus is recovered as thesister clade of the endemic genus Agnotecous, mostly rainforest-dwellers. Dating results show that the island colonization by their common ancestor occurred around 34.7 Myr, shortly after New Caledonia re-emergence. Pixibinthus and Agnotecous are then one of the oldest insect lineages documented so far for New Caledonia. This discovery highlights for the first time two clear-cut ecological specializations between sister clades, as Agnotecous is mainly found in rainforests with 19 species, whereas Pixibinthus is found in open habitats with a single documented species. The preference of Pixibinthus for open habitats and of Agnotecous for forest habitats nicely fits an acoustic specialization, either explained by differences in body size or in acoustic properties of their respective habitats. We hypothesize that landscape dynamics, linked to major past climatic events and recent change in fire regimes are possible causes for both present-day low diversity and rarity in genus Pixibinthus. The unique evolutionary history of this old New Caledonian lineage stresses the importance to increase our knowledge on the faunal biodiversity of ‘maquis minier’, in order to better understand the origin and past dynamics of New Caledonian biota.  相似文献   

9.
Pycnandra (Sapotaceae), the largest endemic genus in New Caledonia, comprises 66 species classified in six subgenera. We tested phylogenetic relationships and a proposed infrageneric classification by sampling 60 species for sequences of nuclear ribosomal DNA (ETS, ITS, RPB2) and plastid DNA (trnH–psbA) and nine morphological characters. Data were analysed with Bayesian inference, parsimony jackknifing and lineage through time. We recovered a phylogenetic tree supporting the recognition of six proposed subgenera (Achradotypus, Leptostylis, Pycnandra, Sebertia, Trouettia and Wagapensia). Because a subgeneric classification is used, the nomenclature will be stable when the members are transferred to Pycnandra. Morphological traits were optimized in the BEAST analysis, adding evidence to earlier work that morphology has limited value for successfully diagnosing groups in Sapotaceae. We confirm a previously suspected case of cryptic species that exhibit the same morphological features and require the same abiotic conditions, but are distantly related in the phylogenetic tree. We detected two possible new cases of cryptic sibling species that might warrant recognition. A slowdown in speciation rate in several genera has been suggested as evidence that New Caledonia was once submerged after rifting from Australia. Plotting lineages through time reveals two important intervals at 7.5–8.6 Ma and present to 1.5 Ma, when net molecular diversification within the genus was zero. This indicates that the genus presently has reached a dynamic equilibrium, providing additional evidence that New Caledonia is an old Darwinian island, being submerged during the Eocene and colonized after re‐emergence c. 37 Ma. © 2015 The Linnean Society of London, Botanical Journal of the Linnean Society, 2015, 179 , 57–77.  相似文献   

10.
Halimeda is a genus of calcified and segmented green macroalgae in the order Bryopsidales. In New Caledonia, the genus is abundant and represents an important part of the reef flora. Previous studies recorded 19 species that were identified using morphological criteria. The aim of this work was to reassess the diversity of the genus in New Caledonia using morpho‐anatomical examinations and molecular analyses of the plastid tufA and rbcL genes. Our results suggest the occurrence of 22 species. Three of these are reported for the first time from New Caledonia: Halimeda kanaloana, H. xishaensis, and an entity resembling H. stuposa. DNA analyses revealed that the species H. fragilis exhibits cryptic or pseudocryptic diversity in New Caledonia. We also show less conclusive evidence for cryptic species within H. taenicola  相似文献   

11.
The biota of New Caledonia is one of the most unusual in the world. It displays high diversity and endemism, many peculiar absences, and far‐flung biogeographic affinities. For example, New Caledonia is the only place on Earth with both main clades of flowering plants – the endemic Amborella and ‘all the rest’, and it also has the highest concentration of diversity in conifers. The discovery of Amborella's phylogenetic position led to a surge of interest in New Caledonian biogeography, and new studies are appearing at a rapid rate. This paper reviews work on the topic (mainly molecular studies) published since 2013. One current debate is focused on whether any biota survived the marine transgressions of the Paleocene and Eocene. Total submersion would imply that the entire fauna was derived by long‐distance dispersal from continental areas since the Eocene, but only if no other islands (now submerged) were emergent. A review of the literature suggests there is little actual evidence in geology for complete submersion. An alternative explanation for New Caledonia's diversity is that the archipelago acted as a refugium, and that the biota avoided the extinctions that occurred in Australia. However, this is contradicted by the many groups that are anomalously absent or depauperate in New Caledonia, although represented there by a sister group. The anomalous absences, together with the unusual levels of endemism, can both be explained by vicariance at breaks in and around New Caledonia. New Caledonia has always been situated at or near a plate boundary, and its complex geological history includes the addition of new terranes (by accretion), orogeny, and rifting. New Caledonia comprises ‘basement’ terranes that were part of Gondwana, as well as island arc and forearc terranes that accreted to the basement after it separated from Gondwana. The regional tectonic history helps explain the regional biogeography, as well as distribution patterns within New Caledonia. These include endemics on the basement terranes (for example, the basal angiosperm, Amborella), disjunctions at the West Caledonian fault zone, and great biotic differences between Grande Terre and the Loyalty Islands.  相似文献   

12.
Four new species of arbuscular mycorrhizal (AM) fungi (Glomeromycota) were isolated from the rhizosphere of endemic metallophytic plants in ultramafic soils in New Caledonia (South Pacific) and propagated on Sorghum vulgare. Acaulospora saccata and A. fragilissima are placed in the Acaulosporaceae, Scutellospora ovalis in the Gigasporaceae, and Rhizophagus neocaledonicus in the Glomeraceae. The novelty of these species is supported by morphological characters of spores and phylogenetic analyses of sequences of the rDNA region, comprising partial small subunit rRNA gene, the internal transcribed spacers, 5.8S rRNA gene, and the partial large subunit rRNA gene. New Caledonia is known for its high degree of endemism in plants, which is due to its geographic position and geological history. This is the first taxonomic study exploring local Glomeromycota of this island, which may help to address the question of possible AMF endemism in future studies.  相似文献   

13.
Aim We investigate spatial and temporal patterns of diversification within the Neotropical avifauna using the phylogenetic history of parrots traditionally belonging to the genus Pionopsitta Bonaparte 1854. This genus has long been of interest for those studying Neotropical biogeography and diversity, as it encompasses species that occur in most Neotropical forest areas of endemism. Location The Neotropical lowland forests in South and Central America. Methods Phylogenetic relationships were investigated for all species of the genus Pionopsitta and five other short‐tailed parrot genera using complete sequences of the mitochondrial genes cyt b and ND2 as well as 26 plumage characters. The resulting phylogeny was used to test the monophyly of the genus, investigate species limits, and as a framework for reconstructing their historical biogeography and patterns of diversification. Results We found that the genus Pionopsitta, as previously defined, is not monophyletic and thus the Chocó, Central American and Amazonian species will now have to be placed in the genus Gypopsitta. The molecular and morphological phylogenies are largely congruent, but disagree on the position of one of the Amazon basin taxa. Using molecular sequence data, we estimate that species within Gypopsitta diversified between 8.7 and 0.6 Ma, with the main divergences occurring between 3.3 and 6.4 Ma. These temporal results are compared to other taxa showing similar vicariance patterns. Main conclusions The results suggest that diversification in Gypopsitta was influenced mainly by geotectonic events, marine transgressions and river dynamics, whereas Quaternary glacial cycles of forest change seem to have played a minor role in the origination of the currently recognized species.  相似文献   

14.
The Australo‐Papuan catbird genus Ailuroedus has a complex distribution and a contested taxonomy. Here, we integrate phylogenetic analysis of DNA data and morphology to study the group's biogeography and to re‐examine its taxonomy. We couple phylogeographic and abiotic data to examine differences between the major groups defined in our phylogenetic analysis. Our results are consistent with Ailuroedus catbirds being divided into two species complexes, one distributed in humid forests in the lowlands on New Guinea and another in comparably drier and colder forests mainly in mid‐mountains on New Guinea and Australia. Vicariant events during the Pliocene are surmised to have been the major force in shaping the contemporary phylogeographical signature of this genus. Several previously suggested vicariant events, such as fragmentation of xeric forests in Australia and the uplift of the central mountain range on New Guinea, are reinforced as important Pliocene barriers for tropical forest taxa in this region. Interaction between Pleistocene climatic fluctuations and differences in habitat requirements may explain a higher and more recent population structures in the mid‐mountain catbird complex and the lack of representatives from the lowland clade in the comparably drier Australia. Phylogeographical patterns in both catbird complexes, respectively, both comply and deviate from other lowland and mid‐mountain taxa in the region. This highlights that taxon‐specific properties, such as their historical spatial and ecological distributions, capacity to disperse and tolerance to habitat changes, affect the phylogeographical histories of organisms. Within both species complexes, the genetic differentiation between several geographically isolated populations was found to exceed those commonly observed for avian sister species. As these genetically distinct taxa also were found to be morphological diagnosable, we suggest a revised classification of the genus Ailuroedus, where we recognize three species within the lowland complex and seven species within the mid‐mountain complex.  相似文献   

15.
Aim To compare the phylogeny of the eucalypt and melaleuca groups with geological events and ages of fossils to discover the time frame of clade divergences. Location Australia, New Caledonia, New Guinea, Indonesian Archipelago. Methods We compare published molecular phylogenies of the eucalypt and melaleuca groups of the plant family Myrtaceae with geological history and known fossil records from the Cretaceous and Cenozoic. Results The Australasian eucalypt group includes seven genera, of which some are relictual rain forest taxa of restricted distribution and others are species‐rich and widespread in drier environments. Based on molecular and morphological data, phylogenetic analyses of the eucalypt group have identified two major clades. The monotypic Arillastrum endemic to New Caledonia is related in one clade to the more species‐rich Angophora, Corymbia and Eucalyptus that dominate the sclerophyll vegetation of Australia. Based on the time of rifting of New Caledonia from eastern Gondwana and the age of fossil eucalypt pollen, we argue that this clade extends back to the Late Cretaceous. The second clade includes three relictual rain forest taxa, with Allosyncarpia from Arnhem Land the sister taxon to Eucalyptopsis of New Guinea and the eastern Indonesian archipelago, and Stockwellia from the Atherton Tableland in north‐east Queensland. As monsoonal, drier conditions evolved in northern Australia, Arnhem Land was isolated from the wet tropics to the east and north during the Oligocene, segregating ancestral rain forest biota. It is argued also that the distribution of species in Eucalyptopsis and Eucalyptus subgenus Symphyomyrtus endemic in areas north of the stable edge of the Australian continent, as far as Sulawesi and the southern Philippines, is related to the geological history of south‐east Asia‐Australasia. Colonization (dispersal) may have been aided by rafting on micro‐continental fragments, by accretion of arc terranes onto New Guinea and by land brought into closer proximity during periods of low sea‐level, from the Late Miocene and Pliocene. The phylogenetic position of the few northern, non‐Australian species of Eucalyptus subgenus Symphyomyrtus suggests rapid radiation in the large Australian sister group(s) during this time frame. A similar pattern, connecting Australia and New Caledonia, is emerging from phylogenetic analysis of the Melaleuca group (Beaufortia suballiance) within Myrtaceae, with Melaleuca being polyphyletic. Main conclusion The eucalypt group is an old lineage extending back to the Late Cretaceous. Differentiation of clades is related to major geological and climatic events, including rifting of New Caledonia from eastern Gondwana, development of monsoonal and drier climates, collision of the northern edge of the Australian craton with island arcs and periods of low sea level. Vicariance events involve dispersal of biota.  相似文献   

16.
The Cape region of South Africa is a hotspot of flowering plant biodiversity. However, the reasons why levels of diversity and endemism are so high remain obscure. Here, we reconstructed phylogenetic relationships among species in the genus Protea, which has its center of species richness and endemism in the Cape, but also extends through tropical Africa as far as Eritrea and Angola. Contrary to previous views, the Cape is identified as the ancestral area for the radiation of the extant lineages: most species in subtropical and tropical Africa are derived from a single invasion of that region. Moreover, diversification rates have been similar within and outside the Cape region. Migration out of the Cape has opened up vast areas, but those lineages have not diversified as extensively at fine spatial scales as lineages in the Cape. Therefore, higher net rates of diversification do not explain the high diversity and endemism of Protea in the Cape. Instead, understanding why the Cape is so diverse requires an explanation for how Cape species are able to diverge and persist at such small spatial scales.  相似文献   

17.
Input data, analytical methods and biogeography of Elegia (Restionaceae)   总被引:1,自引:0,他引:1  
Aim The aim of this paper is to determine the optimal methods for delimiting areas of endemism for Elegia L. (Restionaceae), an endemic genus of the Cape Floristic Region. We assess two methods of scoring the data (presence–absence in regular grids, or in irregular eco‐geographical regions) and three methods for locating biogeographical centres or areas of endemism, and evaluate one method for locating biotic elements. Location The Cape Floristic Region (CFR), South Africa. Methods The distribution of all 48 species of Elegia was mapped as presence–absence data on a quarter‐degree grid and on broad habitat units (eco‐geographical areas). Three methods to delimit areas of endemism were applied: parsimony analysis of endemism (PAE), phenetic cluster analysis, and NDM (‘end em ism’). In addition, we used presence–absence clustering (‘Prabclus’) to delimit biotic elements. The performances of these methods in elucidating the geographical patterns in Elegia were compared, for both types of input data, by evaluating their efficacy in maximizing the proportion of endemics and the number of areas of endemism. Results Eco‐geographical areas perform better than quarter‐degree grids. The eco‐geographical areas are potentially more likely to track the distribution of species. The phenetic approach performed best in terms of its ability to delimit areas of endemism in the study area. The species richness and the richness of range‐restricted species are each highest in the south‐western part of the CFR, decreasing to the north and east. The phytogeographical centres identified in the present study are the northern mountains, the southern mountains (inclusive of the Riviersonderend Mountains and the Cape Peninsula), the Langeberg range, the south coast, the Cape flats, and the west coast. Main conclusions This study demonstrates that (1) eco‐geographical areas should be preferred over a grid overlay in the study of biogeographical patterns, (2) phenetic clustering is the most suitable analytical method for finding areas of endemism, and (3) delimiting biotic elements does not contribute to an understanding of the biogeographical pattern in Elegia. The areas of endemism in Elegia are largely similar to those described in other studies, but there are many detailed differences.  相似文献   

18.
We recorded the Australian guava moth for the first time in New Caledonia. Given its biology and recent spread into New Zealand, this moth may be a pest risk for many fruit crops and native plant species if it is proved to have been introduced in New Caledonia. Indeed, this record challenges our capabilities to identify insect interceptions in the context of a high gap of taxonomic knowledge in New Caledonia. It also urges high endemism islands to implement early detection protocols to prevent establishment and spread of new invasive species.  相似文献   

19.
Aim To investigate areas of endemism in New Caledonia and their relationship with tectonic history. Location New Caledonia, south‐west Pacific. Methods Panbiogeographical analysis. Results Biogeographical patterns within New Caledonia are described and illustrated with reference to eight terranes and ten centres of endemism. The basement terranes make up a centre of endemism for taxa including Amborella, the basal angiosperm. Three of the terranes that accreted to the basement in the Eocene (high‐pressure metamorphic terrane, ultramafic nappe and Loyalty Ridge) have their own endemics. Main conclusions New Caledonia is not simply a fragment of Gondwana but, like New Zealand and New Guinea, is a complex mosaic of allochthonous terranes. The four New Caledonian basement terranes were all formed from island arc‐derived and arc‐associated material (including ophiolites) which accumulated in the pre‐Pacific Ocean, not in Gondwana. They amalgamated and were accreted to Gondwana (eastern Australia) in the Late Jurassic/Early Cretaceous, but in the Late Cretaceous they separated from Australia with the opening of the Tasman Sea and break‐up of Gondwana. An Eocene collision of the basement terranes with an island arc to the north‐east – possibly the Loyalty Ridge – is of special biogeographical interest in connection with New Caledonia–central Pacific affinities. The Loyalty–Three Kings Ridge has had a separate history from that of the Norfolk Ridge/New Caledonia, although both now run in parallel between Vanuatu and New Zealand. The South Loyalty Basin opened between Grande Terre and the Loyalty Ridge in the Cretaceous and attained a width of 750 km. However, it was almost completely destroyed by subduction in the Eocene which brought the Loyalty Ridge and Grande Terre together again, after 30 Myr of separation. The tectonic history is reflected in the strong biogeographical differences between Grande Terre and the Loyalty Islands. Many Loyalty Islands taxa are widespread in the Pacific but do not occur on Grande Terre, and many Grande Terre/Australian groups are not on the Loyalty Islands. The Loyalty Islands are young (2 Myr old) but they are merely the currently emergent parts of the Loyalty Ridge whose ancestor arcs have a history of volcanism dating back to the Cretaceous. Old taxa endemic to the young Loyalty Ridge islands persist over geological time as a dynamic metapopulation surviving in situ on the individually ephemeral islands and atolls found around subduction zones. The current Loyalty Islands, like the Grande Terre terranes, have inherited their biota from previous islands. On Grande Terre, the ultramafic terrane was emplaced on Grande Terre in the Eocene (about the same time as the collision with the island arc). The very diverse endemic flora on the ultramafics may have been inherited by the obducting nappe from prior base‐rich habitat in the region, including the mafic Poya terrane and the limestones typical of arc and intraplate volcanic islands.  相似文献   

20.
Sargassum C. Agardh (1820) is a taxonomically difficult genus distributed worldwide and reported as the most species‐rich genus of the Fucales. It is especially abundant in the Pacific where decreasing species richness is reported to occur from west to east. New Caledonia has been recognized as one of the hotspots of Sargassum diversity; however, species lists available for this region are old and incomplete and have not yet been updated with regard to the latest taxonomic revisions published. This study aimed at revising Sargassum diversity in New Caledonia and to assess its geographic affinities with neighboring Pacific regions. We used combined morphological and DNA analyses on new collections and examined numerous type specimens. Although 45 taxa have been listed in the literature, most of them have been either transferred to synonymy since or misidentified, and in this study, only 12 taxa were recognized as occurring in New Caledonia. They belong to the subgenus Sargassum sect. Binderianae (Grunow) Mattio et Payri (2), sect. Ilicifoliae (J. Agardh) Mattio et Payri (2), sect. Polycystae Mattio et Payri. (1), sect. Sargassum (4), sect. Zygocarpicae (J. Agardh) Setch. (2), and subgenus Phyllotrichia (Aresh.) J. Agardh (1). New Caledonian Sargassum flora appeared as the second richest in the region after the Pacific coast of Australia, with which it has shown high similarity, and shared species with all neighboring regions. One species, S. turbinarioides Grunow, is considered as endemic to New Caledonia. The low genetic diversity detected among several polymorphic species belonging to sect. Sargassum is also discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号