首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this study, the effects of organic loading rate (OLR) and the addition of powdered activated carbon (PAC) on the performance and membrane fouling of MBR were conducted to treat real pharmaceutical process wastewater. Over 145 days of operation, the MBR system was operated at OLRs ranging from 1 to 2 kg COD m?3 day?1 without sludge wasting. The addition of PAC provided an improvement in the flux, despite an increase in the OLR:PAC ratio. The results demonstrated that the hybrid PAC-MBR system maintained a reduced amount of membrane fouling and steadily increased the removal performance of etodolac. PAC addition reduced the deposition of extracellular polymeric substance and organic matter on the membrane surface and resulted an increase in COD removal even at higher OLRs with low PAC addition. Membrane fouling mechanisms were investigated using combined adsorption fouling models. Modified fouling index values and normalized mass transfer coefficient values indicated that predominant fouling mechanism was cake adsorption.  相似文献   

2.
This study aimed at unfolding the role and mechanisms of chemically enhanced cleaning-in-place (CIP) regimes in fouling control of polytetrafluoroethylene (PTFE) made flat sheet (FS) membrane bio-reactors (MBRs). The trans-membrane pressure (TMP) was successfully maintained below 10 kPa using a daily CIP regime consisting of 100 to 600 mg l?1 of NaOCl and cake layer resistance control was shown to be critical for effective high-flux MBR operation. In contrast, in the control unit without the CIP, the TMP exceeded 35 kPa at a flux of 40 LMH. The extracellular polymeric substances associated with proteins (EPSprotein) were also controlled effectively with a daily application of the CIP to the fouled membrane. Moreover, the CIP prompted a thinner and looser bio-cake layer on the membrane surface, suggesting that in situ CIP can be a favorable method to control FS membrane fouling at high-flux MBR operation.  相似文献   

3.
This study evaluated predation with Bdellovibrio bacteriovorous and CO2 aerosol spraying to remove fluorescent Escherichia coli biofilms from silicon chips. Initial tests found that 7.5×105 viable E. coli cells were dispersed into the surrounding environment during aerosol treatment. The total number dispersed per test decreased to only 16 for predated biofilms. This is nearly 50,000-fold lower compared to untreated chips and 1000-fold lower compared to chips soaked in HEPES buffer only. Both scanning electron microscopy (SEM) and fluorescent microscopy analyses confirmed that predation alone did not completely eradicate the biofilm population. When used in conjunction with CO2 aerosols, however, no fluorescent signals remained and the SEM pictures showed a pristine surface devoid of bacteria. Consequently, this study demonstrates these two methods can be used with each other to significantly remove biofilms from surfaces while also significantly reducing the likelihood of human exposure to potential pathogens during their removal.  相似文献   

4.
In this study, Faujasite (FAU) zeolite was coated on low-cost tubular ceramic support as a separating layer through hydrothermal route. The mixture of silicate and aluminate solutions was used to create a zeolitic separation layer on the support. The prepared zeolite ceramic composite membrane was characterized using X-ray powder diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), particle size distribution (PSD), field emission scanning electron microscopy (FESEM), and zeta potential measurements. The porosity of ceramic support (53%) was reduced by the deposition of FAU (43%) zeolite layer. The pore size and water permeability of the membrane were evaluated as 0.179?µm and 1.62?×?10?7?m3/m2?s?kPa, respectively, which are lower than that of the support (pore size of 0.309?µm and water permeability of 5.93?×?10?7?m3/m2?s?kPa). The permeate flux and rejection potential of the prepared membrane were evaluated by microfiltration of bovine serum albumin (BSA). To study the influences of three independent variables such as operating pressure (68.94–275.79?kPa), concentration of BSA (100–500?ppm), and solution pH (2–4) on permeate flux and percentage of rejection, the response surface methodology (RSM) was used. The predicted models for permeate flux and rejection were further subjected to biobjective genetic algorithm (GA). The hybrid RSM-GA approach resulted in a maximum permeate flux of 2.66?×?10?5?m3/m2?s and BSA rejection of 88.02%, at which the optimum conditions were attained as 100?ppm BSA concentration, 2 pH solution, and 275.79?kPa applied pressure. In addition, the separation efficiency was compared with other membranes applied for BSA separation to know the potential of the fabricated FAU zeolite ceramic composite membrane.  相似文献   

5.
To alleviate the fouling of a filter, simple substrates, dynamic filtration, and granular sludge were applied in an anaerobic membrane bioreactor (AnMBR). The results showed that under a transmembrane pressure < 20 kPa, the filter flux ranged between 15 and 20 l (m?2 h)?1 for a period of 30 days. The flux was higher than the typical flux of AnMBRs with conventional membranes and most current dynamic filters. In addition, the low cost of the filter avoided the need for a higher flux. Moreover, a stable granular sludge bed, which consumed all volatile fatty acids, was maintained. A compact fouling/filtration layer formed on the filter, which contributed to low effluent chemical oxygen demand concentrations and turbidity. In addition, substrate scarcity in the filtration zone resulted in the evolution of diverse bacteria on the filter.  相似文献   

6.
The phosphorus (P)-inactivation agents alum or modified zeolite (Aqual-P?) are used in eutrophic lake remediation. Lake managers must evaluate the benefits of P-removal against potential adverse effects on lake biota. Laboratory mesocosms were used to determine whether a 2 month exposure to alum or Aqual-P had lethal or sublethal effects on native benthic-dwelling macroinvertebrates or fish. The P-inactivation agents were applied while the organisms were present to evaluate both acute- and longer-term effects. A gradient of doses up to 344 g alum m?2 (>7 mm capping layer thickness) and a single 200 g Aqual-P m?2 dose were applied with no detectable acute effects on survival or behaviour. After 2 months, there was no significant effect of alum or Aqual-P on the survival or growth of the crayfish, mussels or fish, but aluminium accumulation was measurable in some treatments. Fingernail clams were held in a sub-mesocosm to prevent predation, which resulted in exposure to intact capping layers. The highest alum dose significantly decreased fingernail clam survival and reburial rates, while 200 g Aqual-P m?2 caused highly variable survival. Our findings can be used by lake managers to assist the selection of site-specific application rates for these P-inactivation agents.  相似文献   

7.
Type II extradiol dioxygenase, 2′-carboxy-2,3-dihydroxybiphenyl 1,2-dioxygenase (FlnD1D2) involved in the fluorene degradation pathway of Rhodococcus sp. DFA3 was purified to homogeneity from a heterologously expressing Escherichia coli. Gel filtration chromatography and SDS-PAGE suggested that FlnD1D2 is an α4β4 heterooctamer and that the molecular masses of these subunits are 30 and 9.9 kDa, respectively. The optimum pH and temperature for enzyme activity were 8.0 and 30 °C, respectively. Assessment of metal ion effects suggested that exogenously supplied Fe2+ increases enzyme activity 3.2-fold. FlnD1D2 catalyzed meta-cleavage of 2′-carboxy-2,3-dihydroxybiphenyl homologous compounds, but not single-ring catecholic compounds. The Km and kcat/Km values of FlnD1D2 for 2,3-dihidroxybiphenyl were 97.2 μM and 1.5 × 10?2 μM?1sec?1, and for 2,2′,3-trihydroxybiphenyl, they were 168.0 μM and 0.5 × 10?2 μM?1sec?1, respectively. A phylogenetic tree of the large and small subunits of type II extradiol dioxygenases suggested that FlnD1D2 constitutes a novel subgroup among heterooligomeric type II extradiol dioxygenases.  相似文献   

8.
This study focuses on comparing the performance of submerged membrane bioreactor (SMBR) and submerged membrane adsorption bioreactor (SMABR) over a period of 20 days at a hydraulic retention time (HRT) of 3.1h. The effects of PAC on critical flux and membrane fouling were also investigated. The SMABR exhibited better results in terms of mixed liquor suspended solids (MLSS) growth, DOC removal (over 96%), COD removal (over 95%), transmembrane pressure (TMP) and oxygen uptake rate. Nearly 100% of bacteria and 100% of total coliforms were removed in both systems. The addition of PAC could maintain the critical flux at a lower TMP value (7.5 kPa), while irreversible fouling caused by PAC occurred when the filtration flux exceeded critical flux.  相似文献   

9.
In this study, (S)-3-hydroxy-3-phenylpropionate was prepared continuously by coupling microbial transformation and membrane separation. The effect of several factors on membrane flux, reactor capacity, and reaction conversion were investigated. A kinetic model of the continuous reduction process was also developed. The appropriate molecular weight cut-off of the ultrafiltration membrane was 30 kDa. The reactor capacity reached a maximum of 0.136/h at a biomass concentration and membrane flux of 86 g/L (dry weight/reaction volume) and 20 mL/h, respectively. The (S)-3-hydroxy-3-phenylpropionate yield was 3.68 mmol/L/day after continuous reduction over seven days. The enantiometric excess of (S)-3-hydroxy-3-phenylpropionate reached above 99.5%. The kinetic constants of continuous reduction were as follows: r m = 3.00 × 10−3 mol/L/h, k cat = 3.49 × 10−4 mol/L/h, k 1 = 3.09 × 10−2 mol/L, and k 2 = 5.00 × 10−7 mol/L. The kinetic model was in good agreement with the experimental data obtained during continuous reduction. Compared with batch reduction, continuous reduction can significantly improve the catalytic efficiency of microbial cells and increase the reactor capacity.  相似文献   

10.
A phosphodiesterase I (EC 3.1.4.1; PDE-I) was purified from Walterinnesia aegyptia venom by preparative native polyacrylamide gel electrophoresis (PAGE). A single protein band was observed in analytical native PAGE and sodium dodecyl sulfate (SDS)-PAGE. PDE-I was a single-chain glycoprotein with an estimated molecular mass of 158 kD (SDS-PAGE). The enzyme was free of 5′-nucleotidase and alkaline phosphatase activities. The optimum pH and temperature were 9.0 and 60°C, respectively. The energy of activation (Ea) was 96.4, the Vmax and Km were 1.14 µM/min/mg and 1.9 × 10?3 M, respectively, and the Kcat and Ksp were 7 s?1 and 60 M ?1 min?1 respectively. Cysteine was a noncompetitive inhibitor, with Ki = 6.2 × 10?3 M and an IC50 of 2.6 mM, whereas adenosine diphosphate was a competitive inhibitor, with Ki = 0.8 × 10?3 M and an IC50 of 8.3 mM. Glutathione, o-phenanthroline, zinc, and ethylenediamine tetraacetic acid (EDTA) inhibited PDE-I activity whereas Mg2+ slightly potentiated the activity. PDE-I hydrolyzed thymidine-5′-monophosphate p-nitrophenyl ester most readily, whereas cyclic 3′-5′-AMP was least susceptible to hydrolysis. PDE-I was not lethal to mice at a dose of 4.0 mg/kg, ip, but had an anticoagulant effect on human plasma. These findings indicate that W. aegyptia PDE-I shares various characteristics with this enzyme from other snake venoms.  相似文献   

11.
牛小脑肌醇磷脂激酶PI(4)K高产率纯化与特征   总被引:1,自引:0,他引:1  
对牛小脑膜区肌醇磷脂激酶进行了11 500倍纯化,过程包括:TritonX-100抽提,硫酸铵沉淀,阳离子交换层析(phosphocellulose),亲和层析(Heparin Sepharose CL-6B)和阴离子交换层析(DEAE10,FPLC)等.纯化程度可达95%以上,对SDS-PAGE电泳结果进行扫描分析测其分子质量为56 ku.纯化的肌醇磷脂激酶的特异活性为450 nmol/mg·min, 动力学性质表现为ATP的表观Km值为7.9×10-7 mol/L,PI的表观Km值为6.6×10-7 mol/L. 腺嘌呤核苷是该酶的有效抑制剂,3.5×10-7 mol/L腺嘌呤核苷可使该酶活力降低约50%,而TritonX-100对该酶活力具有刺激作用,0.5% TritonX-100可使该酶表现为最高活力.  相似文献   

12.
An enzymatic hydrolysis in a symmetric membrane, combining reaction and separation, has been studied. PVA hydrogel was chosen because of its hydrophilicity expecting to minimize membrane fouling and concentration polarization. The membrane pores containing covalently bound enzymes serve as catalyst support. The membrane immobilization of the enzyme and the filtration mode of operating the process were chosen in order to avoid product inhibition of the enzyme. The properties of cross‐linked PVA hydrogel were investigated. The conversion of the hydrolysis of p‐nitrophenyllaurate with two different loadings of Cr lipase was evaluated. The conversion of the reaction decreased with both increasing substrate flux and initial concentration. The kinetic parameters were obtained. Compared to the free lipase, the Km of the membrane bonded enzyme was lower and its Rmax approximately the same.  相似文献   

13.
In order to achieve recognition as environmentally friendly production, flue gases should be used as a CO2 source for growing the microalgae Chlorella sorokiniana when used for hydrogen production. Flue gases from a waste incinerator and from a silicomanganese smelter were used. Before testing the flue gases, the algae were grown in a laboratory at 0.04, 1.3, 5.9, and 11.0 % (v/v) pure CO2 gas mixed with fresh air. After 5 days of growth, the dry biomass per liter algal culture reached its maximum at 6.1 % CO2. A second experiment was conducted in the laboratory at 6.2 % CO2 at photon flux densities (PFD) of 100, 230, and 320 μmol photons m?2 s?1. After 4 days of growth, increasing the PFD increased the biomass production by 67 and 108 % at the two highest PFD levels, as compared with the lowest PFD. A bioreactor system containing nine daylight-exposed tubes and nine artificial light-exposed tubes was installed on the roof of the waste incinerator. The effect of undiluted flue gas (10.7 % CO2, 35.8 ppm NO x , and 38.6 ppm SO2), flue gas diluted with fresh air to give 4.2 % CO2 concentration, and 5.0 % pure CO2 gas was studied in daylight (21.4?±?9.6 mol photons m?2 day?1 PAR, day length 12.0 h) and at 135 μmol photons m?2 s?1 artificial light given 24 h day?1 (11.7?±?0.0 mol photons m?2 day?1 PAR). After 4 days’ growth, the biomass production was the same in the two flue gas concentrations and the 5 % pure CO2 gas control. The biomass production was also the same in daylight and artificial light, which meant that, in artificial light, the light use efficiency was about twice that of daylight. The starch concentration of the algae was unaffected by the light level and CO2 concentration in the laboratory experiments (2.5–4.0 % of the dry weight). The flue gas concentration had no effect on starch concentration, while the starch concentration increased from about 1.5 % to about 6.0 % when the light source changed from artificial light to daylight. The flue gas from the silicomanganese smelter was characterized by a high CO2 concentration (about 17 % v/v), low oxygen concentration (about 4 %), about 100 ppm NO x , and 1 ppm SO2. The biomass production using flue gas significantly increased as compared with about 5 % pure CO2 gas, which was similar to the biomass produced at a CO2 concentration of 10–20 % mixed with N2. Thus, the enhanced biomass production seemed to be related to the low oxygen concentration rather than to the very high CO2 concentration.  相似文献   

14.
A nitrogen-based model of maintenance respiration (Rm) would link Rm with nitrogen-based photosynthesis models and enable simpler estimation of dark respiration flux from forest canopies. To test whether an N-based model of Rm would apply generally to foliage of boreal and subalpine woody plants, I measured Rm (CO2 efflux at night from fully expanded foliage) for foliage of seven species of trees and shrubs in the northern boreal forest (near Thompson, Manitoba, Canada) and seven species in the subalpine montane forest (near Fraser, Colorado, USA). At 10°C, average Rm for boreal foliage ranged from 0.94 to 6.8μmol kg?1 s?1 (0.18–0.58 μmol m?2 s?1) and for subalpine foliage it ranged from 0.99 to 7.6 μmol kg?1 s?1 (0.28–0.64μmol m?2 s?1). CO2 efflux at 10°C for the samples was only weakly correlated with sample weight (r = 0.11) and leaf area (r = 0.58). However, CO2 efflux per unit foliage weight was highly correlated with foliage N concentration [r = 0.83, CO2 flux at 10°C (mol kg?1 s?1) = 2.62 × foliage N (mol kg?1)J, and slopes were statistically similar for the boreal and subalpine sites (P=0.28). CO2 efflux per unit of foliar N was 1.8 times that reported for a variety of crop and wildland species growing in warmer climates.  相似文献   

15.
The present study investigated whether increasing morning rectal temperatures (Trec) to evening levels, or increasing morning and evening Trec to an “optimal” level (38.5°C), resulting in increased muscle temperatures (Tm), would offset diurnal variation in repeated sprint (RS) performance in a causal manner. Twelve trained males underwent five sessions [age (mean ± SD) 21.0 ± 2.3 years, maximal oxygen consumption (V?O2max) 60.0 ± 4.4 mL.kg–1 min–1, height 1.79 ± 0.06 m, body mass 78.2 ± 11.8 kg]. These included control morning (M, 07:30 h) and evening (E, 17:30 h) sessions (5-min warm-up), and three further sessions consisting of a warm-up morning trial (ME, in 39–40°C water) until Trec reached evening levels; two “optimal” trials in the morning and evening (M38.5 and E38.5, in 39–40°C water) respectively, until Trec reached 38.5°C. All sessions included 3 × 3-s task-specific warm-up sprints, thereafter 10 × 3-s RS with 30-s recoveries were performed a non-motorised treadmill. Trec and Tm measurements were taken at the start of the protocol and following the warm-up periods. Values for Trec and Tm at rest were higher in the evening compared to morning values (0.48°C and 0.69°C, p < 0.0005). RS performance was lower (7.8–8.3%) in the M for distance covered (DC; p = 0.002), average power (AP; p = 0.029) and average velocity (AV; p = 0.002). Increasing Trec in the morning to evening values or optimal values (38.5°C) did not increase RS performance to evening levels (p = 1.000). However, increasing Trec in the evening to “optimal” level through a passive warm-up significantly reduced DC (p = 0.008), AP (p < 0.0005) and AV (p = 0.007) to values found in the M condition (6.0–6.9%). Diurnal variation in Trec and Tm is not wholly accountable for time-of-day oscillations in RS performance on a non-motorised treadmill; the exact mechanism(s) for a causal link between central temperature and human performance are still unclear and require more research.  相似文献   

16.
Coarse woody debris (CWD) is an important component of the forest carbon cycle, acting as a carbon pool and a source of CO2 in temperate forest ecosystems. We used a soda-lime closed-chamber method to measure CO2 efflux from downed CWD (diameter ≥5 cm) and to examine CWD respiration (R CWD) under field conditions over 1 year in a temperate secondary pioneer forest in Takayama forest. We also investigated tree mortality (input to the CWD pool) from the data obtained from the annual tree census, which commenced in 2000. We developed an exponential function of temperature to predict R CWD in each decay class (R 2 = 0.81–0.97). The sensitivity of R CWD to changing temperature, expressed as Q 10, ranged from 2.12 to 2.92 and was relatively high in decay class III. Annual C flux from CWD (F CWD) was extrapolated using continuous air temperature measurements and CWD necromass pools in the three decay classes. F CWD was 3.0 (class I), 17.8 (class II), and 13.7 g C m?2 year?1 (class III) and totaled 34 g C m?2 year?1 in 2009. Annual input to CWD averaged 77 g C m?2 year?1 from 2000 to 2009. The budget of the CWD pool in the Takayama forest, including tree mortality inputs and respiratory outputs, was 0.43 Mg C ha?1 year?1 (net C sink) owing to high tree mortality in the mature pioneer forest. The potential CWD sink is important for the carbon cycle in temperate successional forests.  相似文献   

17.
Impact of different levels of elevated CO 2 on the activity of Frankia (Nitrogen-fixing actinomycete) in Casuarina equisetifolia rooted stem cuttings has been studied to understand the relationship between C. equisetifolia, Frankia and CO2. The stem cuttings of C. equietifolia were collected and treated with 2000 ppm of Indole Butyric Acid (IBA) for rooting. Thus vegetative propagated rooted stem cuttings of C. equisetifolia were inoculated with Frankia and placed in the Open top chambers (OTC) with elevated CO2 facilities. These planting stocks were maintained in the OTC for 12 months under different levels of elevated CO2 (ambient control, 600 ppm, 900 ppm). After 12 months, the nodule numbers, bio mass, growth, and photosynthesis of C. equisetifolia rooted stem cuttings inoculated with Frankia were improved under 600 ppm of CO2. The rooted stem cuttings of C. equisetifolia inoculated with Frankia showed a higher number of nodules under 900 ppm of CO2 and cuttings without Frankia inoculation exhibited poor growth. Tissue Nitrogen (N) content was also higher under 900 ppm of CO2 than ambient control and 600 ppm levels. The photosynthetic rate was higher (17.8 μ mol CO2 m?2 s?1) in 900 ppm of CO2 than in 600 ppm (13.2 μ mol CO2 m?2 s?1) and ambient control (8.3 μ mol CO2 m?2 s?1). This study showed that Frankia can improve growth, N fixation and photosynthesis of C. equietifolia rooted stem cuttings under extreme elevated CO2 level conditions (900 ppm).  相似文献   

18.
Purified recombinant sorbose dehydrogenase from Sinorhizobium sp. 97507 exhibited high reactivity for 1,5-anhydro-d-glucitol (1,5-AG) and l-sorbose, but little activity for the other sugars or sugar alcohols tested. Kinetic analysis revealed that its catalytic efficiency (kcat/Km) for l-sorbose and 1,5-AG is 1.8 × 102 and 1.5 × 102 s?1·M?1, respectively.  相似文献   

19.
We evaluated the nighttime CO2 flux (ecosystem respiration) on Rishiri Island, located at the northern tip of Hokkaido, Japan, from 2009 to 2011, by using the relationship between atmospheric 222Rn and CO2 concentrations. The annual mean CO2 flux was 1.8 μmol m?2 s?1, with a maximum monthly mean in July (4.6 ± 2.6 μmol m?2 s?1) and a broad minimum from December to March (0.33 ± 0.29 μmol m?2 s?1). The annual mean was comparable to fluxes at the JapanFlux sites in northern Japan. During the season of snow cover (mid-December to early April), the CO2 flux was low (0.45 ± 0.43 μmol m?2 s?1). Total annual respiration was estimated at 679 ± 174 g cm?2, about 8 % of which occurred during the season of snow cover.  相似文献   

20.
In this study, the mechanical properties of biofilms formed at the surface of nano-filtration (NF) membranes from a drinking water plant were analysed. Confocal laser scanning microscopy observations revealed that the NF biofilms formed a dense and heterogeneous structure at the membrane surface, with a mean thickness of 32.5 ± 17.7 μm. The biofilms were scraped from the membrane surface and analysed in rotation and oscillation experiments with a RheoStress 150 rotating disk rheometer. During rotation analyses, a viscosity decrease with speed of shearing characteristic of rheofluidification was observed (η = 300 Pa s for ý = 0.3 s?1). In the oscillation analyses with a sweeping of frequency (1–100 Hz), elasticity (G′) ranged from 3000 to 3500 Pa and viscosity (G″) from 800 to 1200 Pa. Creep curves obtained with an application of a shear stress of 30 Pa were viscoelastic in nature. The G 0 and η values were, respectively, 1.4 ± 0.3 × 103 Pa and 3.3 ± 0.65 × 106 Pa s. The relationship between the characteristics of NF biofilms and the flow conditions encountered during NF is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号