首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Using endothelial cells for therapeutic angiogenesis/vasculogenesis of ischemia diseases has led to exploring human embryonic stem cells (hESCs) as a potentially unlimited source for endothelial progenitor cells. With their capacity for self‐renewal and pluripotency, hESCs and their derived endothelial cells (hESC‐ECs) may be more advantageous than other endothelial cells obtained from diseased populations. However, hESC‐ECs' poor differentiation efficiency and poorly characterized in vivo function after transplantation present significant challenges for their future clinical application. This review will focus on the differentiation pathways of hESCs and their therapeutic potential for vascular diseases, as well as the monitoring of transplanted cells' fate via molecular imaging. Finally, cell enhancement strategies to improve the engraftment efficiency of hESC‐ECs will be discussed. J. Cell. Biochem. 106: 194–199, 2009. © 2008 Wiley‐Liss, Inc.  相似文献   

2.
3.
4.
Of paramount importance for the development of cell therapies to treat diabetes is the production of sufficient numbers of pancreatic endocrine cells that function similarly to primary islets. We have developed a differentiation process that converts human embryonic stem (hES) cells to endocrine cells capable of synthesizing the pancreatic hormones insulin, glucagon, somatostatin, pancreatic polypeptide and ghrelin. This process mimics in vivo pancreatic organogenesis by directing cells through stages resembling definitive endoderm, gut-tube endoderm, pancreatic endoderm and endocrine precursor--en route to cells that express endocrine hormones. The hES cell-derived insulin-expressing cells have an insulin content approaching that of adult islets. Similar to fetal beta-cells, they release C-peptide in response to multiple secretory stimuli, but only minimally to glucose. Production of these hES cell-derived endocrine cells may represent a critical step in the development of a renewable source of cells for diabetes cell therapy.  相似文献   

5.
6.
《Cryobiology》2015,71(3):283-286
We have previously shown that human embryonic stem cell derived islet progenitors (hESC-IPs), encapsulated inside an immunoprotective device, mature in vivo and ameliorate diabetes in mice. The ability to cryopreserve hESC-IPs preloaded in these devices would enhance consistency and portability, but traditional ‘slow freezing’ methods did not work well for cells encapsulated in the device. Vitrification is an attractive alternative cryopreservation approach. To assess the tolerance of hESC-IPs to vitrification relevant conditions, we here are reporting cell survival following excursions in tonicity, exposure to fifteen 40% v/v combinations of 4 cryoprotectants, and varied methods for addition and elution. We find that 78% survival is achieved using a protocol in which cells are abruptly (in one step) exposed to a solution containing 10% v/v each dimethyl sulfoxide, propylene glycol, ethylene glycol, and glycerol on ice, and eluted step-wise with DPBS + 0.5 M sucrose at 37 °C. Importantly, the hESC-IPs also maintain expression of the critical islet progenitor markers PDX-1, NKX6.1, NGN3 and NEURO-D1. Thus, hESC-IPs exhibit robust tolerance to exposure to vitrification solutions in relevant conditions.  相似文献   

7.
Hematopoietic stem cell transplantation (HSCT) is the ultimate choice of treatment for patients with hematological diseases and cancer. The success of HSCT is critically dependent on the number and engraftment efficiency of the transplanted donor hematopoietic stem cells (HSCs). Various studies show that bone marrow‐derived mesenchymal stromal cells (MSCs) support hematopoiesis and also promote ex vivo expansion of HSCs. MSCs exert their therapeutic effect through paracrine activity, partially mediated through extracellular vesicles (EVs). Although the physiological function of EVs is not fully understood, inspiring findings indicate that MSC‐derived EVs can reiterate the hematopoiesis, supporting the ability of MSCs by transferring their cargo containing proteins, lipids, and nucleic acids to the HSCs. The activation state of the MSCs or the signaling mechanism that prevails in them also defines the composition of their EVs, thereby influencing the fate of HSCs. Modulating or preconditioning MSCs to achieve a specific composition of the EV cargo for the ex vivo expansion of HSCs is, therefore, a promising strategy that can overcome several challenges associated with the use of naïve/unprimed MSCs. This review aims to speculate upon the potential role of preconditioned/primed MSC‐derived EVs as “cell‐free biologics,” as a novel strategy for expanding HSCs in vitro.  相似文献   

8.
9.
10.
In vivo MR imaging of magnetically labeled human embryonic stem cells   总被引:10,自引:0,他引:10  
INTRODUCTION: Human embryonic stem cells (hES) have emerged as a potentially new therapeutic approach for treatment of heart and other diseases applying the concept of regenerative medicine. A method for in vivo visualization and tracking of transplanted hES would increase our understanding of in vivo hES behavior in both experimental and clinical settings. The aim of this study was to evaluate the feasibility of magnetic labeling and visualization of hES with magnetic resonance imaging (MRI). METHODS: hES were established and expanded according to standard procedures. After expansion, the cells were cultured under feeder free conditions and magnetically labeled by addition of dextran-coated Ferrum-oxide particles (Endorem) to the medium. Accumulation of small particles of iron-oxide (SPIO) in hES was assessed by Prussian blue staining and electron microscopy. For in vitro MRI, the labeled and unlabeled hES were examined in cell solution and after transplantation into explanted mouse heart ( approximately 100,000 cells) on a Bruker Avance DMX 500 vertical magnet at 11.75 T. A multi-slice, multi spin-echo T(2)-weighted images were obtained. For in vivo imaging, the experiments were performed on male Sprague-Dawley using Bruker Biospec 2.35 T magnet. The hES were directly injected ( approximately 500,000 cells) after surgical procedure (thoracotomy) into anterior left ventricular (LV) wall. Multi-slice T(2)-weighted gradient echo images were obtained using cardiac gating. RESULTS: hES appeared to be unaffected by magnetic labeling and maintained their ability to proliferate and differentiate. No additive agent for membrane permeabilisation was needed for facilitation of intracellular SPIO accumulation. Prussian blue and electron microscopy have revealed numerous iron particles in the cytoplasm of hES. On T(2)-weighted images, the labeled cells have shown well-defined hyopintense areas at the site of injection in anterior LV wall both in vitro and in vivo. CONCLUSIONS: It is feasible to magnetically label and visualize hES both in vitro and in vivo. MR visualization of magnetically labeled hES may be a valuable tool for in vivo tracking of hES.  相似文献   

11.
Gene targeting in embryonic stem (ES) cells remains best practice for introducing complex mutations into the mouse germline. One aspect in this multistep process that has not been streamlined with regard to the logistics and ethics of mouse breeding is the efficiency of germline transmission: the transmission of the ES cell‐derived genome through the germline of chimeras to their offspring. A method whereby male chimeras transmit exclusively the genome of the injected ES cells to their offspring has been developed. The new technology, referred to as goGermline, entails injecting ES cells into blastocysts produced by superovulated homozygous Tsc22d3 floxed females mated with homozygous ROSA26‐Cre males. This cross produces males that are sterile due to a complete cell‐autonomous defect in spermatogenesis. The resulting male chimeras can be sterile but when fertile, they transmit the ES cell‐derived genome to 100% of their offspring. The method was validated extensively and in two laboratories for gene‐targeted ES clones that were derived from the commonly used parental ES cell lines Bruce4, E14, and JM8A3. The complete elimination of the collateral birth of undesired, non‐ES cell‐derived offspring in goGermline technology fulfills the reduction imperative of the 3R principle of humane experimental technique with animals. genesis 54:326–333, 2016. © 2016 The Authors. Genesis Published by Wiley Periodicals, Inc.  相似文献   

12.
13.
14.
15.
We describe the differentiation of human embryonic stem (hES) cells into endothelial cells using a scalable two-dimensional method that avoids an embryoid-body intermediate. After transplantation into severe combined immunodeficient (SCID) mice, the differentiated cells contributed to arborized blood vessels that integrated into the host circulatory system and served as blood conduits for 150 d.  相似文献   

16.
17.
18.
Human embryonic stem (hES) cells provide a promising supply of specific cell types for transplantation therapy. We presented here the method to induce differentiation of purified neural precursors from hES cells. hES cells (Line PKU-1 and Line PKU-2) were cultured in suspension in bacteriological Petri dishes, which differentiated into cystic embryoid bodies (EBs). The EBs were then cultured in N2 medium containing bFGF in poly-L-lysine-coated tissue culture dishes for two weeks. The central, small cells with 2–3 short processes of the spreading outgrowth were isolated mechanically and replated. The resulting neurospheres were cultured in suspension for 10 days, then dissociated into single cell suspension with a Pasteur pipette and plated. Cells grew vigorously in an attached way and were passed every 4–5 days. Almost all the cells were proved nestin positive by immunostaining. Following withdrawal of bFGF, they differentiated into neurons expressing β-tubulin isotypeIII, GABA, serotonin and synaptophysin. Through induction of PDGF-AA, they differentiated into astrocytes expressing GFAP and oligodendrocytes expressing O4. The results showed that hES cells can differentiate into typical neural precursors expressing the specific marker nestin and capable of generating all three cell types of the central nervous system (CNS)in vitro.  相似文献   

19.
Neural precursors derived from human embryonic stem cells   总被引:2,自引:1,他引:1  
Before the successful isolation of human embryonic stem (hES) cells, many investigations had shown that mouse embryonic stem (mES) cells can be induced to differentiate into neural precursors which could be purified and differentiated to mature dopamine, motor, serotonin, GABA neurons, and oligodendrocytes and astrocytes in vitro[1―3]. mES cell-derived dopamine neurons have been shown capable of integrating into host brains after transplanting to the rodents of Park-inson’s disease model …  相似文献   

20.
In this study we demonstrate that CD34(+) cells derived from human embryonic stem cells (hESCs) have higher smooth muscle cell (SMC) potential than CD34(-) cells. We report that from all inductive signals tested, retinoic acid (RA) and platelet derived growth factor (PDGF(BB)) are the most effective agents in guiding the differentiation of CD34(+) cells into smooth muscle progenitor cells (SMPCs) characterized by the expression of SMC genes and proteins, secretion of SMC-related cytokines, contraction in response to depolarization agents and vasoactive peptides and expression of SMC-related genes in a 3D environment. These cells are also characterized by a low organization of the contractile proteins and the contractility response is mediated by Ca(2+), which involves the activation of Rho A/Rho kinase- and Ca(2+)/calmodulin (CaM)/myosin light chain kinase (MLCK)-dependent pathways. We further show that SMPCs obtained from the differentiation of CD34(+) cells with RA, but not with PDGF(BB,) can be maturated in medium supplemented with endothelin-1 showing at the end individualized contractile filaments. Overall the hESC-derived SMCs presented in this work might be an unlimited source of SMCs for tissue engineering and regenerative medicine.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号