首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Red snow caused by dinoflagellates is a phenomenon rarely reported, described from the European Alps from 1914 onwards, and subsequently observed outside Europe on several occasions in Ontario, Canada. Considerable taxonomic confusion exists regarding the identity of the organism(s) causing red snow, but the most recent occurrence in 2016 in Ontario has now allowed detailed studies, including LM, SEM, TEM and molecular sequencing of the causative species. We conclude that the two species originally described as the cause of red snow, Glenodinium pascheri and Gyrodinium nivale, are synonymous and that the appropriate name for the organism is Borghiella pascheri (syn. Woloszynskia pascheri) as suggested by Moestrup & Calado in the recent volume of the Süsswasserflora. The central part of Borghiella pascheri cells is tomato red and filled with numerous organelles, whose ultrastructure indicates modified chloroplasts. Lack of cultures has prevented chemical characterization of the red pigment. Formation of temporary cysts was common in the samples. Transformation of the motile cells into temporary cysts was followed in detail, and the cysts were shown to be surrounded by the fused inner membranes of the amphiesmal vesicles, which became the cell membrane of the cysts, covered by the fused pellicle precursors. The cell membrane from the motile cell was discarded together with the outer amphiesmal vesicle membrane and the thin thecal plates, and the temporary cysts were therefore not surrounded by any pattern of vesicles. Sexual reproduction resulted in the formation of hypnozygotes. Although the species possessed several unusual features, DNA sequencing showed it to belong to Borghiella. The culture established in 1965 from the Botanical Garden in Göttingen, Germany and generally identified as Woloszynskia pascheri belongs to a separate species of Borghiella, to be described separately.The occurrence of red snow caused by dinoflagellates is discussed.  相似文献   

2.
Little is known about the UV photobiology of psychrophilic dinoflagellates, particularly in freshwater systems. We addressed the life strategies of Borghiella dodgei Moestrup, Gert. Hansen et Daugbjerg to cope with ambient levels of ultraviolet radiation (UVR) under cold conditions. Several physiological parameters related to growth, metabolism, and UVR protection were determined for 4 d in UVR‐exposed and control cells by applying stable isotope analysis, spectrophotometry, and liquid chromatography–mass spectrometry (LC/MS). In UVR‐exposed cells, assimilation of 15N and 13C and content of chl a and carotenoids, specifically diatoxanthin with respect to dinoxanthin and diadinoxanthin, were increased; furthermore, catalase activity showed a cyclic pattern with a strong increase after UVR exposure but a rapid return to preexposure levels. Both in UVR‐exposed and control cells, no lipid peroxidation of galactolipids was observed. However, in UVR‐exposed cells, content of galactolipids was higher and linked to an increase in monogalactosyldiacylglycerols (MGDGs). We concluded that Borghiella's adaptation to UVR depended on a general metabolic enhancement and efficient scavenging of oxygen radicals to mitigate and counteract damage. While Borghiella seemed to be well adapted to ambient UVR, the interactive effects of higher temperature and UVR on psychrophilic species in front of climate change merit further investigation.  相似文献   

3.
In Lake Tovel, an oligotrophic and weakly stratified lake, the dinoflagellate Borghiella dodgei Moestrup, Hansen et Daugbjerg, showed a peculiar spatial–temporal pattern with highest abundances in the bottom of the shallow side bay (4 m) along with remarkable abundance variations from year to year. We investigated B. dodgei’s growth in laboratory cultures and related results to their implication for bloom formation. B. dodgei was cultivated under different temperature, nutrient and light conditions. Growth rates, cell biovolume, cyst formation and pigment and mycosporine-like amino acids (MAAs) concentrations were determined. Experiments showed that this alga (i) had higher growth rates at low temperatures (<7°C) and high irradiance levels (~250 μmol m−2 s−1), (ii) produced higher yields with organic supplements such as peptone, (iii) did not grow in the dark even with organic supplements, (iv) survived for long periods without a light source, (v) synthesised MAAs, (vi) showed an increase in cell volume with nutrient shortage and increasing temperatures (>7°C) and (vii) had high encystment rates with temperatures >7°C. These laboratory fingerprints allowed us to construct a theoretical model defining the species’ niche. Borghiella needed a mixture of low temperatures, high irradiance levels and sufficient quantities of dissolved organic nitrogen to form blooms. Such a strict combination was probably a transient situation and occurred in oligotrophic Lake Tovel only in early summers followed by heavy spring rains.  相似文献   

4.
The ultrastructure of the green dinoflagellate Lepididodinium viride M. M. Watanabe, S. Suda, I. Inouye Sawaguchi et Chihara was studied in detail. The nuclear envelope possessed numerous chambers each furnished with a nuclear pore, a similar arrangement to that found in other gymnodinioids. The flagellar apparatus was essentially identical to Gymnodinium chlorophorum Elbrächter et Schnepf, a species also containing chloroplasts of chlorophyte origin. Of particular interest was the connection of the flagellar apparatus to the nuclear envelope by means of both a fiber and a microtubular extension of the R3 flagellar root. This feature has not been found in other dinoflagellates and suggests a close relationship between these two species. This was confirmed by phylogenetic analysis based on partial sequences of the large subunit (LSU) rDNA gene of L. viride, G. chlorophorum and 16 other unarmoured dinoflagellates, including both the ‘type’ culture and a new Tasmanian isolate of G. chlorophorum. These two isolates had identical sequences and differed from L. viride by only 3.75% of their partial LSU sequences, considerably less than the difference between other Gymnodinium species. Therefore, based on ultrastructure, pigments and partial LSU rDNA sequences, the genus Lepidodinium was emended to encompass L. chlorophorum comb. nov.  相似文献   

5.
Species of prorocentroid dinoflagellates are common in marine benthic sediment and epibenthic habitats, as well as in planktonic habitats. Marine planktonic prorocentroids typically possess a small spine in the apical region. In this study, we describe a new, potentially widely distributed benthic species of Prorocentrum, P. fukuyoi sp. nov., from tidal sand habitats in several sites in Australia and from central Japan. This species was found to possess an apical spine or flange and was sister species to P. emarginatum. We analyzed the phylogeny of the group including this new species, based on large subunit (LSU) rDNA sequences. The genus contained a high level of divergence in LSU rDNA, in some cases among sister taxa. P. fukuyoi and P. emarginatum were found to be most closely related to a clade of generally planktonic taxa. Several morphological features may constitute more informative synapomorphies than habitat in distinguishing clades of prorocentroid species.  相似文献   

6.
The external morphology and internal cell fine structure of a new species of Tovelliaceae, Tovellia rubescens n. sp., is described. Phylogenetic analyses based on partial LSU rDNA sequences place the new species in a clade containing Tovellia species that accumulate red pigments and identify T. aveirensis as its closest known relative. Cells of T. rubescens n. sp. were mostly round and had the cingulum located near the middle, with its ends displaced about one cingular width. Small numbers of distinctly flat cells appeared in culture batches; their significance could not be determined. Cells of the new species in culture batches progressively changed from a yellowish‐green, mainly due to chloroplast colour, to a reddish‐brown colour that appeared associated with lipid bodies. The switch to a reddish colour happened earlier in batches grown in medium lacking sources of N or P. Pigment analyses by HPLC‐MS/MS revealed the presence of astaxanthin and astaxanthin‐related metabolites in the new species, but also in T. aveirensis, in which a reddish colour was never observed. The chloroplast arrangement of T. rubescens n. sp. resembled that of T. aveirensis, with lobes radiating from a central pyrenoid complex. The flagellar apparatus and pusular system fell within the general features described from other Tovelliaceae. A row of microtubules interpretable as a microtubular strand of the peduncle was present. Spiny resting cysts with red contents and an ITS sequence identical to that of cultured material of the new species were found in the original locality.  相似文献   

7.
Cellular morphology and the phylogenetic position of a new unarmored photosynthetic dinoflagellate Cochlodinium fulvescens Iwataki, Kawami et Matsuoka sp. nov. were examined by light microscopy and molecular phylogenetic analyses based on partial large subunit ribosomal DNA (LSU rDNA) and small subunit ribosomal DNA (SSU rDNA) sequences. The cells of C. fulvescens closely resemble C. polykrikoides, one of the most harmful red tide forming dinoflagellates, due to it possessing a cingulum encircling the cell approximately twice, a spherical nucleus positioned in the anterior part of the cell and an eyespot‐like orange pigmented body located in the dorsal side of the epicone, as well as formation of cell‐chains. However, this species is clearly distinguished from C. polykrikoides based on several morphological characteristics, namely, cell size, shape of chloroplasts and the position of narrow sulcus situated in the cell surface. The sulcus of C. fulvescens is located at the intermediate position of the cingulum in the dorsal side, whereas that of C. polykrikoides is situated immediately beneath the cingulum. LSU rDNA phylogenies indicated that C. fulvescens is clearly distinct from, but closely related to C. polykrikoides among dinoflagellates.  相似文献   

8.
Two monospecific genera of marine benthic dinoflagellates, Adenoides and Pseudadenoides, have unusual thecal tabulation patterns (lack of cingular plates in the former; and no precingular plates and a complete posterior intercalary plate series in the latter) and are thus difficult to place within a phylogenetic framework. Although both genera share morphological similarities, they have not formed sister taxa in previous molecular phylogenetic analyses. We discovered and characterized a new species of Pseudadenoides, P. polypyrenoides sp. nov., at both the ultrastructural and molecular phylogenetic levels. Molecular phylogenetic analyses of SSU and LSU rDNA sequences demonstrated a close relationship between P. polypyrenoides sp. nov. and Pseudadenoides kofoidii, and Adenoides and Pseudadenoides formed sister taxa in phylogenetic trees inferred from LSU rDNA sequences. Comparisons of morphological traits, such as the apical pore complex (APC), demonstrated similarities between Adenoides, Pseudadenoides and several planktonic genera (e.g. Heterocapsa, Azadinium and Amphidoma). Molecular phylogenetic analyses of SSU and LSU rDNA sequences also demonstrated an undescribed species within Adenoides.  相似文献   

9.
The heterotrophic marine dinoflagellate genus Protoperidinium is the largest genus in the Dinophyceae. Previously, we reported on the intrageneric and intergeneric phylogenetic relationships of 10 species of Protoperidinium, from four sections, based on small subunit (SSU) rDNA sequences. The present paper reports on the impact of data from an additional 5 species and, therefore, an additional two sections, using the SSU rDNA data, but now also incorporating sequence data from the large subunit (LSU) rDNA. These sequences, in isolation and in combination, were used to reconstruct the evolutionary history of the genus. The LSU rDNA trees support a monophyletic genus, but the phylogenetic position within the Dinophyceae remains ambiguous. The SSU, LSU and SSU + LSU rDNA phylogenies support monophyly in the sections Avellana, Divergentia, Oceanica and Protoperidinium, but the section Conica is paraphyletic. Therefore, the concept of discrete taxonomic sections based on the shape of 1′ plate and 2a plate is upheld by molecular phylogeny. Furthermore, the section Oceanica is indicated as having an early divergence from other groups within the genus. The sections Avellana and Excentrica and a clade combining the sections Divergentia/Protoperidinium derived from Conica‐type dinoflagellates independently. Analysis of the LSU rDNA data resulted in the same phylogeny as that obtained using SSU rDNA data and, with increased taxon sampling, including members of new sections, a clearer idea of the evolution of morphological features within the genus Protoperidinium was obtained. Intraspecific variation was found in Protoperidinium conicum (Gran) Balech, Protoperidinium excentricum (Paulsen) Balech and Protoperidinium pellucidum Bergh based on SSU rDNA data and also in Protoperidinium claudicans (Paulsen) Balech, P. conicum and Protoperidinium denticulatum (Gran et Braarud) Balech based on LSU rDNA sequences. The common occurrence of base pair substitutions in P. conicum is indicative of the presence of cryptic species.  相似文献   

10.
The freshwater dinoflagellate Borghiella dodgei is adapted to cold temperatures. We investigated the effects of small temperature changes on its galactolipid composition, choosing 3 and 7°C as deviations from its optimal growth temperature (5°C). The galactolipid profile, important for maintenance of membrane fluidity, was determined by liquid chromatography–mass spectrometry and the influence of temperature on galactolipids was investigated by one-way ANOVA. We found 24 different galactolipid species, including novel tri-galactosyldiacylglycerols (TGDGs). The overall amount of mono- (MGDG), di- (DGDG) and tri- (TGDG) galactosyldiacylglycerols remained stable while single galactolipids varied with temperature. Few changes were found from 3 to 5°C, instead 11 galactolipid species changed from 5 to 7°C. Concomitantly with the unsaturation index of MGDGs, the more unsaturated galactolipids decreased at higher temperature, and the less abundant and less unsaturated galactolipids in each lipid class accumulated. Changes in the galactolipid profile of Borghiella underlined its cold-stenothermal nature: it can adapt to relatively ‘higher’ temperatures by reducing the synthesis of the more unsaturated MGDGs, DGDGs and TGDGs, but remains restricted by its lower growth rate. Based on our results, we predict that with climate change the galactolipid profile of cold-stenothermal algae will change with important repercussions on their consumers.  相似文献   

11.
The genera Protoperidinium Bergh, Diplopsalis Bergh, and Preperidinium Mangin, comprised of species of marine, thecate, heterotrophic dinoflagellates in the family Protoperidinaceae Balech, have had a confused taxonomic history. To elucidate the validity of morphological groupings within the Protoperidinium and diplopsalids, and to determine the evolutionary relationships between these and other dinoflagellates, we undertook a study of molecular phylogeny using the D1–D3 domains of the large subunit (LSU) of the rDNA. Based on morphology, the 10 Protoperidinium species examined belonged to three subgenera and five morphological sections. Two diplopsalid species were also included. Single‐cell PCR, cloning, and sequencing revealed a high degree of intraindividual sequence variability in the LSU rDNA. The genus Protoperidinium appeared to be recently divergent in all phylogenetic analyses. In maximum parsimony and neighbor joining analyses, Protoperidinium formed a monophyletic group, evolving from diplopsalid dinoflagellates. In maximum likelihood and Bayesian analyses, however, Protoperidinium was polyphyletic, as the lenticular, diplopsalid heterotroph, Diplopsalis lenticula Bergh, was inserted within the Protoperidinium clade as basal to Protoperidinium excentricum (Paulsen) Balech, and Preperidinium meunieri (Pavillard) Elbrächter fell within a separate clade as a sister to the Oceanica and Protoperidinium steidingerae Balech. In all analyses, the Protoperidinium were divided into two major clades, with members in the Oceanica group and subgenus Testeria in one clade, and the Excentrica, Conica, Pellucida, Pyriforme and Divergens sections in the other clade. The LSU rDNA molecular phylogeny supported the historical morphologically determined sections, but not a simple morphology based model of evolution based on thecal plate shape.  相似文献   

12.
The genera Esoptrodinium Javornický and Bernardinium Chodat comprise freshwater, athecate dinoflagellates with an incomplete cingulum but differing reports regarding cingulum orientation and the presence of chloroplasts and an eyespot. To examine this reported diversity, six isolates were collected from different freshwater ponds and brought into clonal culture. The isolates were examined using LM to determine major cytological differences, and rDNA sequences were compared to determine relatedness and overall phylogenetic position within the dinoflagellates. All isolates were athecate with a left‐oriented cingulum that did not fully encircle the cell, corresponding to the current taxonomic concept of Esoptrodinium. However, consistent cytological differences were observed among clonal isolates. Most isolates exhibited unambiguous pale green chloroplasts and a distinct bright‐red eyespot located at the base of the longitudinal flagellum. However, one isolate had cryptic chloroplasts that were difficult to observe using LM, and another had an eyespot that was so reduced as to be almost undetectable. Another isolate lacked visible chloroplasts but did possess the characteristic eyespot. Nuclear rDNA phylogenies strongly supported a monophyletic Esoptrodinium clade containing all isolates from this study together with a previous sequence from Portugal, within the Tovelliaceae. Esoptrodinium subclades were largely correlated with cytological differences, and the data suggested that independent chloroplast and eyespot reduction and/or loss may have occurred within this taxon. Overall, the isolates encompassed the majority of cytological diversity reported in previous observations of Bernardinium/Esoptrodinium in field samples. Systematic issues with the current taxonomic distinction between Bernardinium and Esoptrodinium are discussed.  相似文献   

13.
Four unarmored heterotrophic dinoflagellates were isolated from the coastal waters of southern Korea. The rDNA sequences of four clonal cultures were determined, and the morphology of one of the four strains was examined using light and scanning and transmission electron microscopy. The large subunit (LSU) and small subunit (SSU) rDNA sequences of each of the strains differed by 0–0.9% from those of the other strains, and the SSU rDNA sequence of the strain differed by 1.8–4.4% from those of other Gyrodinium species, whereas the LSU (D1–D2) rDNA sequence differed by 12.4–22.2%. Furthermore, phylogenetic trees showed that Gyrodinium jinhaense n. sp. formed a distinctive clade among the other Gyrodinium species. Meanwhile, microscopy revealed an elliptical bisected apical structure complex and a cingulum that was displaced by approximately one‐quarter of the cell length, which confirmed that the dinoflagellate belonged to the genus Gyrodinium. However, the cell surface was ornamented with 16 longitudinal striations, both on the episome and hyposome, unlike other Gyrodinium species. Furthermore, the cells were observed to have pusule systems and trichocysts but lacked mucocysts. Based on morphology and molecular data, we consider this strain to be a new species in the genus Gyrodinium and thus, propose that it be assigned to the name Gjinhaense n. sp.  相似文献   

14.
A new marine woloszynskioid dinoflagellate Dactylodinium pterobelotum gen. et sp. nov., collected from a southern Vietnamese estuary, was described on the basis of LM, SEM, and TEM, and molecular phylogeny inferred from rDNA sequences. This species had the smallest number of amphiesmal vesicles (5 latitudinal series) in woloszynskioid dinoflagellates assigned to the Suessiaceae and Borghiellaceae. The eyespot was of type B, composed of osmiophilic globules and brick‐like material, located in‐ and outside of the chloroplast respectively. An apical structure comprised a pair of elongate anterior vesicles (PEV). A large peduncle was conspicuous, located in the sulcal extension in the epicone, and supported by a microtubular strand of ~140 microtubules. Ultrastructural features of trichocysts represent a novel type in the Dinophyceae, bearing lateral hairs besides anterior fibers. The molecular phylogeny based on partial LSU rDNA showed the species in a basal position in the family Suessiaceae; this indicates the eyespot type B and PEV of the Borghiellaceae are ancestral states of the eyespot comprising brick‐like material (type E) and an elongate apical vesicle of the Suessiaceae.  相似文献   

15.
In a previous study large-subunit ribosomal RNA gene (LSU rDNA) sequences from the marine dinoflagellates Alexandrium tamarense (Lebour) Balech, A. catenella (Whedon et Kofoid) Balech, A. fundyense Balech, A. affine (Fukuyo et Inoue) Balech, A. minutum Halim, A. lusitanicum Balech, and A. andersoni Balech were compared to assess inter- and intraspecific relationships. Many cultures compared in that study contained more than one class of LSU rDNA. Sequencing pooled clones of rDNA from single cultures revealed length heterogeneities and sequence ambiguities. This complicated sequence comparisons because multiple rDNA clones from a single culture had to be sequenced individually to document the different classes of molecules present in that culture. A further complication remained as to whether or not the observed intraculture sequence variations were reliable genetic markers or were instead artifacts of the polymerase chain reaction (PCR) amplification, cloning, and/or sequencing methods employed. The goals of the present study were to test the accuracy of Alexandrium LSU rDNA sequences using restriction fragment-length polymorphism (RFLP) analysis and to devise RFLP-based assays for discriminating among representatives of that group. Computer-assisted examination of the sequences allowed us to identify a set of restriction enzymes that were predicted to reveal species, strain, and intraculture LSU rDNA heterogeneities. All groups identified by sequencing were revealed independently and repeatedly by RFLP analysis of PCR-amplified material. Five ambiguities and one length heterogeneity, each of which ascribes a unique group of Alexandrium species or strains, were confirmed by restriction digests. Observed intraculture LSU rDNA heterogeneities were not artifacts of cloning and sequencing but were instead a good representation of the spectrum of molecules amplified during PCR reactions. Intraculture LSU rDNA heterogeneities thus serve as unique genetic markers for particular strains of Alexandrium, particularly those of A. tamarense, A. catenella, and A. fundyense. However, some of these “signature heterogeneities” represented a smaller portion of PCR product than was expected given acquired sequences. Other deviations from predicted RFLP patterns included incomplete digestions and appearance of spurious products. These observations indicate that the diversity of sequences in PCR product pools were greater than that observed by cloning and sequencing. The RFLP tests described here are useful tools for characterizing Alexandrium LSU rDNA to define the evolutionary lineage of cultures and are applicable at a fraction of the time, cost, and labor required for sequencing.  相似文献   

16.
17.
The D1/D2 domains of large subunit (LSU) rDNA have commonly been used for phylogenetic analyses of dinoflagellates; however, their properties have not been evaluated in relation to other D domains due to a deficiency of complete sequences. This study reports the complete LSU rRNA gene sequence in the causative unarmored dinoflagellate Cochlodinium polykrikoides, a member of the order Gymnodiniales, and evaluated the segmented domains and secondary structures when compared with its relatives. Putative LSU rRNA coding regions were recorded to be 3433 bp in length (49.0% GC content). A secondary structure predicted from the LSU and 5.8S rRNAs and parsimony analyses showed that most variation in the LSU rDNA was found in the 12 divergent (D) domains. In particular, the D2 domain was the most informative in terms of recent evolutional and taxonomic aspects, when compared with both the phylogenetic tree topologies and molecular distance (approximately 10 times higher) of the core LSU. Phylogenetic analysis was performed with a matrix of LSU DNA sequences selected from domains D2 to D4 and their flanking core sequences, which showed that C. polykrikoides was placed on the same branch with Akashiwo sanguinea in the “GPP” complex, which is referred to the gymnodinioid, peridinioid and prorocentroid groups. A broad phylogeny showed that armored and unarmored dinoflagellates were never clustered together; instead, they were clearly divided into two groups: the GPP complex and Gonyaulacales. The members of Gymnodiniales were always interspersed with peridinioid, prorocentroid and dinophysoid forms. This supports previous findings showing that the Gymnodiniales are polyphyletic. This study highlights the proper selection of LSU rDNA molecules for molecular phylogeny and signatures.  相似文献   

18.
The genus Paragymnodinium currently includes two species, P. shiwhaense and P. stigmaticum, that are characterized by mixotrophic nutrition and the possession of nematocysts. In this study, two new dinoflagellates belonging to this genus were described based on observations using LM, SEM, and TEM together with a molecular analysis. Cells of P. asymmetricum sp. nov., isolated from Nha Trang Beach, Vietnam, were 7.9–12.6 μm long and 4.7–9.0 μm wide. The species showed no evidence of feeding behavior and was able to sustain itself phototrophically. Paragymnodinium asymmetricum shared many features with P. shiwhaense, including presence of nematocysts, absence of an eyespot, and a planktonic lifestyle, but was clearly distinguished by the asymmetric shape of the hyposome, possession of a single chloroplast, and its nutritional mode. Cells of P. inerme sp. nov., isolated from Jogashima, Kanagawa Pref, Japan, were 15.3–23.7 μm long and 10.9–19.6 μm wide. This species also showed no evidence of feeding behavior. Paragymnodinium inerme was similar to cells of P. shiwhaense in shape and planktonic lifestyle, but its nutritional mode was different. The presence of incomplete nematocysts was also a unique feature. A phylogenetic analysis inferred from concatenated SSU and LSU rDNA sequences recovered the two dinoflagellates in a robust clade with Paragymnodinium spp., within the clade of Gymnodinium sensu stricto. This evidence, together with their morphological similarities, made it reasonable to conclude that these two dinoflagellates are new species of Paragymnodinium.  相似文献   

19.
Recent collections of fertile Chondria tenuissima, the type species of the genus, and Chondria dasyphylla (Woodward) C. Ag. from European waters have clarified details of their morphology and reproduction. This has allowed more detailed comparisons with southern Australian material hitherto placed under these species and has shown that neither occurs on these coasts. Records of these species from other countries may thus be open to doubt.

Ruthenium Red-positive cell wall thickenings are present in some populations of both species. In C. tenuissima the thickenings are thin and lenticular or band-like, occurring on both the upper ends and inner and radial walls of pericentral and subcortical cells. In C. dasyphylla the thickenings occur as band-like caps on upper ends of these cells. Older pericentral cells may also develop additional, separate thickenings on the inner and radial walls, and in cells near the base of the plant these become lobed.

The production of an auxiliary cell after fertilization of the procarp has been observed in both species. However its purported absence in material of C. tenuissima examined by Phillips (1896, p. 19) is not discounted as this situation has been observed in a number of southern Australian species of Chondria in which the division of the supporting cell is delayed until after the diploid nucleus has been transferred from the carpogonium. This variation appears to be more common in the Ceramiales than previously realized, however it does not appear to be sufficient to invalidate Kylin's differentiation of the order.  相似文献   

20.
The name Peridinium palatinum Lauterborn currently designates a freshwater peridinioid with 13 epithecal and six cingular plates, and no apical pore complex. Freshwater dinoflagellate floras classify it in Peridinium group palatinum together with P. pseudolaeve M. Lefèvre. General ultrastructure, flagellar apparatus, and pusular components of P. palatinum were examined by serial section TEM and compared to P. cinctum (O. F. Müll.) Ehrenb. and Peridiniopsis borgei Lemmerm., respectively, types of Peridinium and Peridiniopsis. Partial LSU rDNA sequences from P. palatinum, P. pseudolaeve and several peridinioids, woloszynskioids, gymnodinioids, and other dinoflagellates were used for a phylogenetic analysis. General morphology and tabulation of taxa in group palatinum were characterized by SEM. Differences in plate numbers, affecting both the epitheca and the cingulum, combine with differences in plate ornamentation and a suite of internal cell features to suggest a generic‐level distinction between Peridinium group palatinum and typical Peridinium. The branching pattern of the phylogenetic tree is compatible with this conclusion, although with low support from bootstrap values and posterior probabilities, as are sequence divergences estimated between species in group palatinum, and typical Peridinium and Peridiniopsis. Palatinus nov. gen. is proposed with the new combinations Palatinus apiculatus nov. comb. (type species; syn. Peridinium palatinum), P. apiculatus var. laevis nov. comb., and P. pseudolaevis nov. comb. Distinctive characters for Palatinus include a smooth or slightly granulate, but not areolate, plate surface, a large central pyrenoid penetrated by cytoplasmic channels and radiating into chloroplast lobes, and the presence of a peduncle‐homologous microtubular strand. Palatinus cells exit the theca through the antapical‐postcingular area.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号