首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This study uses fluid–structure interaction (FSI) simulation to investigate the relationship between the dentinal fluid flow in the dental pulp of a tooth and the elastic modulus of masticated food particles and to investigate the effects of chewing rate on fluid flow in the dental pulp. Three-dimensional simulation models of a premolar tooth (enamel, dentine, pulp, periodontal ligament, cortical bone, and cancellous bone) and food particle were created. Food particles with elastic modulus of 2,000 and 10,000 MPa were used, respectively. The external displacement loading $(5\,\upmu \hbox {m})$ was gradually directed to the food particle surface for 1 and 0.1 s, respectively, to simulate the chewing of food particles. The displacement and stress on tooth structure and fluid flow in the dental pulp were selected as evaluation indices. The results show that masticating food with a high elastic modulus results in high stress and deformation in the tooth structure, causing faster dentinal fluid flow in the pulp in comparison with that obtained with soft food. In addition, fast chewing of hard food particles can induce faster fluid flow in the pulp, which may result in dental pain. FSI analysis is shown to be a useful tool for investigating dental biomechanics during food mastication. FSI simulation can be used to predict intrapulpal fluid flow in dental pulp; this information may provide the clinician with important concept in dental biomechanics during food mastication.  相似文献   

2.
Dental trauma is one of the most common events in dental practice. However, few studies have investigated the biomechanical characteristics of these injuries. The objective of this study was to analyse the stress distribution in the dentoalveolar structures of a maxillary central incisor subjected to two situations of impact loading. The following loading forces were applied using a 3D finite element model: a force of 2000 N acting at an angle of 90°on the buccal surface of the crown and a vertical 2000 N force acting in the cleidocranial direction on the incisal surface of the tooth. Harmful stresses were observed in both situations, causing damage to both the tooth and adjacent tissue. However, the damage found in soft tissues such as periodontal ligament and dental pulp was negligible. In conclusion, injuries resulting from the traumatic situations were more damaging to the integrity of the tooth and its associated hard-tissue structures.  相似文献   

3.
The aim of this study was to measure the cardiac output and stroke volume for a healthy subject by coupling an echocardiogram Doppler (echo-Doppler) method with a fluid–structure interaction (FSI) simulation at rest and during exercise. Blood flow through aortic valve was measured by Doppler flow echocardiography. Aortic valve geometry was calculated by echocardiographic imaging. An FSI simulation was performed, using an arbitrary Lagrangian–Eulerian mesh. Boundary conditions were defined by pressure loads on ventricular and aortic sides. Pressure loads applied brachial pressures with (stage 1) and without (stage 2) differences between brachial, central and left ventricular pressures. FSI results for cardiac output were 15.4% lower than Doppler results for stage 1 (r = 0.999). This difference increased to 22.3% for stage 2. FSI results for stroke volume were undervalued by 15.3% when compared to Doppler results at stage 1 and 26.2% at stage 2 (r = 0.94). The predicted mean backflow of blood was 4.6%. Our results show that numerical methods can be combined with clinical measurements to provide good estimates of patient-specific cardiac output and stroke volume at different heart rates.  相似文献   

4.
Orthodontic force application is well known to induce sterile inflammation, which is initially caused by the compression of blood vessels in tooth-supporting apparatus. The reaction of periodontal ligament cells to mechanical loading has been thoroughly investigated, whereas knowledge on tissue reactions of the dental pulp is rather limited. The aim of the present trial is to analyze the effect of orthodontic treatment on the induction and cellular regulation of intra-pulpal hypoxia. To investigate the effect of orthodontic force on dental pulp cells, which results in circulatory disturbances within the dental pulp, we used a rat model for the immunohistochemical analysis of the accumulation of hypoxia-inducible factor-1α in the initial phase of orthodontic tooth movement. To further examine the regulatory role of circulatory disturbances and hypoxic conditions, we analyze isolated dental pulp cells from human teeth with regard to their specific reaction under hypoxic conditions by means of flow cytometry, immunoblot, ELISA and real-time PCR on markers (Hif-1α, VEGF, Cox-2, IL-6, IL-8, ROS, p65). In vivo experiments showed the induction of hypoxia in dental pulp after orthodontic tooth movement. The induction of oxidative stress in human dental pulp cells showed up-regulation of the pro-inflammatory and angiogenic genes Cox-2, VEGF, IL-6 and IL-8. The present data suggest that orthodontic tooth movement affects dental pulp circulation by hypoxia, which leads to an inflammatory response inside treated teeth. Therefore, pulp tissue may be expected to undergo a remodeling process after tooth movement.  相似文献   

5.
Abdominal aortic aneurysm (AAA) rupture is the clinical manifestation of an induced force exceeding the resistance provided by the strength of the arterial wall. This force is most frequently assumed to be the product of a uniform luminal pressure acting along the diseased wall. However fluid dynamics is a known contributor to the pathogenesis of AAAs, and the dynamic interaction of blood flow and the arterial wall represents the in vivo environment at the macro-scale. The primary objective of this investigation is to assess the significance of assuming an arbitrary estimated peak fluid pressure inside the aneurysm sac for the evaluation of AAA wall mechanics, as compared with the non-uniform pressure resulting from a coupled fluid–structure interaction (FSI) analysis. In addition, a finite element approach is utilised to estimate the effects of asymmetry and wall thickness on the wall stress and fluid dynamics of ten idealised AAA models and one non-aneurysmal control. Five degrees of asymmetry with uniform and variable wall thickness are used. Each was modelled under a static pressure-deformation analysis, as well as a transient FSI. The results show that the inclusion of fluid flow yields a maximum AAA wall stress up to 20% higher compared to that obtained with a static wall stress analysis with an assumed peak luminal pressure of 117 mmHg. The variable wall models have a maximum wall stress nearly four times that of a uniform wall thickness, and also increasing with asymmetry in both instances. The inclusion of an axial stretch and external pressure to the computational domain decreases the wall stress by 17%.  相似文献   

6.
This study combines finite element method and animal studies, aiming to investigate tissue remodelling processes around dental implants inserted into sika deer antler and to develop an alternative animal consuming model for studying bone remodelling around implants. Implants were inserted in the antlers and loaded immediately via a self-developed loading device. After 3, 4, 5 and 6 weeks, implants and surrounding tissue were taken out. Specimens were scanned by μCT scanner and finite element models were generated. Immediate loading and osseointegration conditions were simulated at the implant-tissue interface. A vertical force of 10 N was applied on the implant. During the healing time, density and Young’s modulus of antler tissue around the implant increased significantly. For each time point, the values of displacement, stresses and strains in the osseointegration model were lower than those of the immediate loading model. As the healing time increased, the displacement of implants was reduced. The 3-week immediate loading model (9878 ± 1965 μstrain) illustrated the highest strains in the antler tissue. Antler tissue showed similar biomechanical properties as human bone in investigating the bone remodelling around implants, therefore the use of sika deer antler model is a promising alternative in implant biomechanical studies.  相似文献   

7.
A transient multi-physics model of the mitral heart valve has been developed, which allows simultaneous calculation of fluid flow and structural deformation. A recently developed contact method has been applied to enable simulation of systole (the stage when blood pressure is elevated within the heart to pump blood to the body). The geometry was simplified to represent the mitral valve within the heart walls in two dimensions. Only the mitral valve undergoes deformation. A moving arbitrary Lagrange–Euler mesh is used to allow true fluid–structure interaction (FSI). The FSI model requires blood flow to induce valve closure by inducing strains in the region of 10–20%. Model predictions were found to be consistent with existing literature and will undergo further development.  相似文献   

8.
Dental implant failure is mainly the consequence of bone loss at peri-implant area. It usually begins in crestal bone. Due to this gradual loss, implants cannot withstand functional force without bone overload, which promotes complementary loss. As a result, implant lifetime is significantly decreased. To estimate implant success prognosis, taking into account 0.2 mm annual bone loss for successful implantation, ultimate occlusal forces for the range of commercial cylindrical implants were determined and changes of the force value for each implant due to gradual bone loss were studied. For this purpose, finite element method was applied and von Mises stresses in implant–bone interface under 118.2 N functional occlusal load were calculated. Geometrical models of mandible segment, which corresponded to Type II bone (Lekholm & Zarb classification), were generated from computed tomography images. The models were analyzed both for completely and partially osseointegrated implants (bone loss simulation). The ultimate value of occlusal load, which generated 100 MPa von Mises stresses in the critical point of adjacent bone, was calculated for each implant. To estimate longevity of implants, ultimate occlusal loads were correlated with an experimentally measured 275 N occlusal load (Mericske-Stern & Zarb). These findings generally provide prediction of dental implants success.  相似文献   

9.
It is unknown whether spinal cord motion has a significant effect on cerebrospinal fluid (CSF) pressure and therefore the importance of including fluid structure interaction (FSI) in computational fluid dynamics models (CFD) of the spinal subarachnoid space (SAS) is unclear. This study aims to determine the effects of FSI on CSF pressure and spinal cord motion in a normal and in a stenosis model of the SAS. A three-dimensional patient specific model of the SAS and spinal cord were constructed from MR anatomical images and CSF flow rate measurements obtained from a healthy human being. The area of SAS at spinal level T4 was constricted by 20% to represent the stenosis model. FSI simulations in both models were performed by running ANSYS CFX and ANSYS Mechanical in tandem. Results from this study show that the effect of FSI on CSF pressure is only about 1% in both the normal and stenosis models and therefore show that FSI has a negligible effect on CSF pressure.  相似文献   

10.
Pulp regeneration using human dental pulp stem cells (hDPSCs) maintains tooth vitality compared with conventional root canal therapy. Our previous study demonstrated that preameloblast-conditioned medium (PA-CM) from murine apical bud cells induces the odontogenic differentiation of hDPSCs and promoted dentin formation in mouse subcutaneous tissue. The purpose of the present study is to evaluate the effects of PA-CM with human whole pulp cells on pulp regeneration in an empty root canal space. Human pulp cells were seeded in the pulp cavities of 5 mm-thick human tooth segments with or without PA-CM treatment, and then transplanted subcutaneously into immunocompromised mice. In the pulp cell-only group, skeletal muscle with pulp-like tissue was generated in the pulp cavity. A reparative dentin-like structure with entrapped cells lined the existing dentin wall. However, in the PA-CM-treated group, only pulp-like tissue was regenerated without muscle or a reparative dentin-like structure. Moreover, human odontoblast-like cells exhibited palisade arrangement around the pulp, and typical odontoblast processes elongated into dentinal tubules. The results suggest that PA-CM can induce pulp regeneration of human pulp cells with physiological structures in an empty root canal space.  相似文献   

11.
Tooth loss often results in alveolar bone resorption because of lack of mechanical stimulation. Thus, the mechanism of mechanical loading on stem cell osteogenesis is crucial for alveolar bone regeneration. We have investigated the effect of mechanical loading on osteogenesis in human dental pulp stromal cells (hDPSCs) in a novel in vitro model. Briefly, 1?×?107 hDPSCs were seeded into 1 ml 3 % agarose gel in a 48-well-plate. A loading tube was then placed in the middle of the gel to mimic tooth-chewing movement (1 Hz, 3?×?30 min per day, n?=?3). A non-loading group was used as a control. At various time points, the distribution of live/dead cells within the gel was confirmed by fluorescence markers and confocal microscopy. The correlation and interaction between the factors (e.g. force, time, depth and distance) were statistically analysed. The samples were processed for histology and immunohistochemistry. After 1–3 weeks of culture in the in-house-designed in vitro bioreactor, fluorescence imaging confirmed that additional mechanical loading increased the viable cell numbers over time as compared with the control. Cells of various phenotypes formed different patterns away from the reaction tube. The cells in the middle part of the gel showed enhanced alkaline phosphatase staining at week 1 but reduced staining at weeks 2 and 3. Additional loading enhanced Sirius Red and type I collagen staining compared with the control. We have thus successfully developed a novel in-house-designed in vitro bioreactor mimicking the biting force to enhance hDPSC osteogenesis in an agarose scaffold and to promote bone formation and/or prevent bone resorption.  相似文献   

12.
Within the framework of conservation actions for the Eurasian lynx (Lynx lynx), ageing of individuals is required to assess suitability for translocation and to investigate population dynamics and disease epidemiology. We aimed to develop a standardised ageing tool for free-ranging Eurasian lynx, which would be non-invasive, time- and cost-effective, and applicable under field conditions. We used tooth pictures of 140 free-ranging lynx of known age from Switzerland. Tooth colour, calculus, number of incisor teeth and canine, premolar and molar tooth wear were recorded according to pre-defined criteria. Statistical comparisons among the categories of each criterion revealed significant differences for all criteria. Tooth colour and canine tooth morphology showed obvious and consistent alterations with age. Together with the molar tooth shape, premolar tooth tips, incisor teeth and amount of calculus, they pictured the age-related changes in lynx dentition. Crown fractures, enamel flaking and open pulp cavities were observed with an increasing prevalence over age but were also sporadically seen in juveniles. Based on the obtained results, we developed a classification scheme distinguishing six age classes: <?1 year, 1–2 years, 3–6 years, 7–9 years, 10–13 years, ≥?14 years. The scheme was subsequently tested with the same lynx. Classification success rates of different readers ranged from 69 to 88% but errors did not exceed one age class. The homogenous tooth replacement pattern observed in lynx <?1 year allowed us to develop a separate ageing chart to age juveniles in months. The proposed scheme is a promising tool to objectively assign lynx to meaningful age categories.  相似文献   

13.
The aim of this study is to elucidate the correlation between coronary artery branch angulation, local mechanical and haemodynamic forces at the vicinity of bifurcation. Using a coupled fluid–structure interaction (FSI) modelling approach, five idealized left coronary artery models with various angles ranging from 70° to 110° were developed to investigate the influence of branch angulations. In addition, one CT image-based model was reconstructed to further demonstrate the medical application potential of the proposed FSI coupling method. The results show that the angulation strongly alters its mechanical stress distribution, and the instantaneous wall shear stress distributions are substantially moderated by the arterial wall compliance. As high tensile stress is hypothesized to cause stenosis, the left circumflex side bifurcation shoulder is indicated to induce atherosclerotic changes with a high tendency for wide-angled models.  相似文献   

14.
Apoptosis is a key phenomenon in the regulation of the life span of odontoblasts, which are responsible for dentin matrix production of the teeth. The mechanism controlling odontoblasts loss in developing, normal, and injured human teeth is largely unknown. A possible correlation between apoptosis and dental pulp volume reduction was examined. Histomorphometric analysis was performed on intact 10 to 14 year-old premolars to follow dentin deposition and evaluate the total number of odontoblasts. Apoptosis in growing healthy teeth as well as in mature irritated human teeth was determined using a modified TUNEL technique and an anti-caspase-3 antibody. In intact growing teeth, the sequential rearrangement of odontoblasts into a multi-layer structure during tooth crown formation was correlated with an apoptotic wave that leads to the massive elimination of odontoblasts. These data suggest that apoptosis, coincident with dentin deposition changes, plays a role in tooth maturation and homeostasis. Massive apoptotic events were observed after dentin irritation. In carious and injured teeth, apoptosis was detected in cells surrounding the lesion sites, as well as in mono-nucleated cells nearby the injury. These results indicate that apoptosis is a part of the mechanism that regulate human dental pulp chamber remodeling during tooth development and pathology.  相似文献   

15.
This study reconstructed a three dimensional fluid/structure interaction (FSI) model to investigate the compliance of human soft palate during calm respiration. Magnetic resonance imaging scans of a healthy male subject were obtained for model reconstruction of the upper airway and the soft palate. The fluid domain consists of nasal cavity, nasopharynx and oropharynx. The airflow in upper airway was assumed as laminar and incompressible. The soft palate was assumed as linear elastic. The interface between airway and soft palate was the FSI interface. Sinusoidal variation of velocity magnitude was applied at the oropharynx corresponding to ventilation rate of 7.5L/min. Simulations of fluid model in upper airway, FSI models with palatal Young's modulus of 7539Pa and 3000Pa were carried out for two cycles of respiration. The results showed that the integrated shear forces over the FSI interface were much smaller than integrated pressure forces in all the three directions (axial, coronal and sagittal). The total integrated force in sagittal direction was much smaller than that of coronal and axial directions. The soft palate was almost static during inspiration but moved towards the posterior pharyngeal wall during expiration. In conclusion, the displacement of human soft palate during respiration was mainly driven by air pressure around the surface of the soft palate with minimal contribution of shear stress of the upper airway flow. Despite inspirational negative pressure, expiratory posterior movement of soft palate could be another factor for the induction of airway collapse.  相似文献   

16.
Finite element (FE) modelling is a popular tool for studying human body response to blast exposure. However, blast modelling is a complex problem owing to more numerous fluid–structure interactions (FSIs) and the high–frequency loading that accompanies blast exposures. This study investigates FE mesh design for blast modelling using a sphere in a closed-ended shock tube meshed with varying element sizes using both tetrahedral and hexahedral elements. FSI was consistent for sphere-to-fluid element ratios between 0.25 and 4, and acceleration response was similar for both element types (R2 = 0.997). Tetrahedral elements were found to become increasingly volatile following shock loading, causing higher pressures and stresses than predicted with the hexahedral elements. Deviatoric stress response was dependent on the sphere mesh size (p < 0.001), while the pressure response was dependent on the shock tube mesh size (p < 0.001). The results of this study highlight the necessity for mesh sensitivity analysis in blast models.  相似文献   

17.
A transient fluid–structure interaction (FSI) model of a congenitally bicuspid aortic valve has been developed which allows simultaneous calculation of fluid flow and structural deformation. The valve is modelled during the systolic phase (the stage when blood pressure is elevated within the heart to pump blood to the body). The geometry was simplified to represent the bicuspid aortic valve in two dimensions. A congenital bicuspid valve is compared within the aortic root only and within the aortic arch. Symmetric and asymmetric cusps were simulated, along with differences in mechanical properties. A moving arbitrary Lagrange–Euler mesh was used to allow FSI. The FSI model requires blood flow to induce valve opening and induced strains in the region of 10%. It was determined that bicuspid aortic valve simulations required the inclusion of the ascending aorta and aortic arch. The flow patterns developed were sensitive to cusp asymmetry and differences in mechanical properties. Stiffening of the valve amplified peak velocities, and recirculation which developed in the ascending aorta. Model predictions demonstrate the need to take into account the category, including any existing cusp asymmetry, of a congenital bicuspid aortic valve when simulating its fluid flow and mechanics.  相似文献   

18.
The Carnivora occupy a wide range of feeding niches in concordance with the enormous diversity in their skull and dental form. It is well established that differences in crown morphology are linked to variations in the material properties of the foods ingested and masticated. However, how tooth root form is related to dietary specialization is less well known. In the present study, we investigate the relationship between tooth root morphology and dietary specialization in terrestrial carnivores (canids, felids, hyaenids, and ursids). We specifically address the question of how variation in tooth root surface area is related to bite force potentials as one of the crucial masticatory performance parameters in feeding ecology. We applied computed tomography imaging to reconstruct and quantify dental root surface area in 17 extant carnivore species. Moreover, we computed maximal bite force at several tooth positions based on a dry skull model and assessed the relationship of root surface area to skull size, maximal bite force, food properties, and prey size. We found that postcanine tooth root surface areas corrected for skull size serve as a proxy for bite force potentials and, by extension, dietary specialization in carnivores. Irrespective of taxonomic affinity, species that feed on hard food objects have larger tooth roots than those that eat soft or tough foods. Moreover, carnivores that prey on large animals have larger tooth root surface areas. Our results show that tooth root morphology is a useful indicator of bite force production and allows inferences to be made about dietary ecology in both extant and extinct mammals. © 2011 The Linnean Society of London, Biological Journal of the Linnean Society, 2012, 105, 456–471.  相似文献   

19.
Lower survival rates were observed for the implant placed in the anterior maxilla. The purpose of this study was to investigate the influence of different implant lengths on the stress distribution around osseointegrated implants under a static loading condition in the anterior maxilla using a three-dimensional finite element analysis. The diameter of 4.0 mm external type implants of different lengths (8.5 mm, 10.0 mm, 11.5 mm, 13.0 mm, 15.0 mm) was used in this study. The anterior maxilla was assumed to be D3 bone quality. All the material was assumed to be homogenous, isotropic and linearly elastic. The implant–bone interface was constructed using a rigid element for simulating the osseointegrated condition. Then, 176 N of static force was applied on the middle of the palatoincisal line angle of the abutment at a 120°angle to the long axis of abutment. The von Mises stress value was measured with an interval of 0.25 mm along the bone–implant interface. Incremental increase in implant length causes a gradual reduction of maximum and average von Mises stress at the labial portion within the implant. In the bone, higher stress was concentrated within cortical bone area and more distributed at the labial cortex, while cancellous bone showed relatively low stress concentration and even distribution. An increase in implant length reduced stress gradients at the cortical peri-implant region. Implant length affects the mechanisms of load transmission to the osseointegrated implant. On the basis of this study the biomechanical stress-based performance of implants placed in the anterior maxilla improves when using longer implants.  相似文献   

20.
The human dentition is indispensable for nutrition and physiology. The teeth have evolved for mastication of food. Caries is a common dental problem in which the dentin matrix is damaged. When the caries is deep and the dental pulp is exposed, the pulp has to be removed in many cases, resulting ultimately in loss of the tooth. Therefore, the regeneration of dentin-pulp complex is the long-term goal of operative dentistry and endodontics. The key elements of dentin regeneration are stem cells, morphogens such as bone morphogenetic proteins (BMPs) and a scaffold of extracellular matrix. The dental pulp has stem/progenitor cells that have the potential to differentiate into dentin-forming odontoblasts in response to BMPs. Pulpal wound healing consists of stem/progenitor cells release from dental pulp niche after noxious stimuli such as caries, migration to the injured site, proliferation and differentiation into odontoblasts. There are two main strategies for pulp therapy to regenerate dentin: (1) in vivo method of enhancing the natural healing potential of pulp tissue by application of BMP proteins or BMP genes, (2) ex vivo method of isolation of stem/progenitor cells, differentiation with BMP proteins or BMP genes and transplantation to the tooth. This review summarizes recent advances in application of BMPs for dentin regeneration and possible use in endodotic therapy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号