首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A number of treatment approaches exist for excessive flowrate arteriovenous fistulae. Banding has a number of advantages, yet there is concern over its use due to reported high post-surgery thrombosis rates. A computational study is conducted of a new technique, to elucidate the hemodynamics present in the process. The key improvement involves the use of an adjustable band which can be used to optimise the flowrate during the surgery. The pressure and flowrate changes are apparent from the computational results and the computational results also demonstrate that further optimization may be possible. We then present a small cohort of five cases where the new banding procedure has been implemented with success. The new technique was combined with intra-operative ultrasound flow monitoring.  相似文献   

2.
    
Perfusion bioreactors have been used in different tissue engineering applications because of their consistent distribution of nutrients and flow-induced shear stress within the tissue-engineering scaffold. A widely used configuration uses a scaffold with a circular cross-section enclosed within a cylindrical chamber and inlet and outlet pipes which are connected to the chamber on either side through which media is continuously circulated. However, fluid-flow experiments and simulations have shown that the majority of the flow perfuses through the center. This pattern creates stagnant zones in the peripheral regions as well as in those of high flow rate near the inlet and outlet. This non-uniformity of flow and shear stress, owing to a circular design, results in limited cell proliferation and differentiation in these areas. The focus of this communication is to design an optimized perfusion system using computational fluid dynamics as a mathematical tool to overcome the time-consuming trial and error experimental method. We compared the flow within a circular and a rectangular bioreactor system. Flow simulations within the rectangular bioreactor are shown to overcome the limitations in the circular design. This communication challenges the circular cross-section bioreactor configuration paradigm and provides proof of the advantages of the new design over the existing one.  相似文献   

3.
Liu R  Sun W  Liu CZ 《Biotechnology progress》2011,27(6):1672-1679
Recently, cichoric acid production from hairy roots of Echinacea purpurea was significantly improved by ultrasound stimulation in an airlift bioreactor. In this article, the possible mechanism on ultrasound-intensified hairy root culture of E. purpurea in the bioreactor was elucidated with the help of computational fluid dynamics (CFD) simulation, membrane permeability detection, dissolved oxygen concentration detection, confocal laser-scanning microscopy (LSM) observation, and phenylalanine ammonium lyase (PAL) activity analysis. The CFD model developed in Part I was used to simulate the hydrodynamics and oxygen mass transfer in hairy root bioreactor culture stimulated by ultrasound. A dynamic mesh model combined with a changing Schmidt number method was used for the simulation of the ultrasound field. Simulation results and experimental data illustrated that ultrasound intensified oxygen mass transfer in the hairy root clump, which subsequently stimulated root growth and cichoric acid biosynthesis. Ultrasound increased the hairy root membrane permeability, and a high root membrane permeability of 0.359 h(-1) was observed at the bottom region in the bioreactor. LSM observation showed that the change in the membrane permeability recovered to normal in the further culture after ultrasound stimulation. PAL activity in the hairy roots was stimulated by ultrasound increase and was correlated well to cichoric acid accumulation in the hairy roots of E. purpurea.  相似文献   

4.
    
The liver is organized in hexagonal functional units – termed lobules – characterized by a rather peculiar blood microcirculation, due to the presence of a tangled network of capillaries – termed sinusoids. A better understanding of the hemodynamics that governs liver microcirculation is relevant to clinical and biological studies aimed at improving our management of liver diseases and transplantation.Herein, we built a CFD model of a 3D sinusoidal network, based on in vivo images of a physiological mouse liver obtained with a 2-photon microscope. The CFD model was developed with Fluent 16.0 (ANSYS Inc., Canonsburg, PA), particular care was taken in imposing the correct boundary conditions representing a physiological state. To account for the remaining branches of the sinusoids, a lumped parameter model was used to prescribe the correct pressure at each outlet. The effect of an adhered cell on local hemodynamics is also investigated for different occlusion degrees.The model here proposed accurately reproduces the fluid dynamics in a portion of the sinusoidal network in mouse liver. Mean velocities and mass flow rates are in agreement with literature values from in vivo measurements. Our approach provides details on local phenomena, hardly described by other computational studies, either focused on the macroscopic hepatic vasculature or based on homogeneous porous medium model.  相似文献   

5.
Vascular anastomoses constitute a main factor in poor graft performance due to mismatches in distensibility between the host artery and the graft. This work aims at computational fluid–structure investigations of proximal and distal anastomoses of vein grafts and synthetic grafts. Finite element and finite volume models were developed and coupled with a user-defined algorithm. Emphasis was placed on the simplicity of the coupling algorithm. An artery and vein graft showed a larger dilation mismatch than an artery and synthetic graft. The vein graft distended nearly twice as much as the artery while the synthetic graft displayed only approximately half the arterial dilation. For the vein graft, luminal mismatching was aggravated by development of an anastomotic pseudo-stenosis. While this study focused on end-to-end anastomoses as a vehicle for developing the coupling algorithm, it may serve as useful point of departure for further investigations such as other anastomotic configurations, refined modelling of sutures and fully transient behaviour.  相似文献   

6.
Arterio-venous grafts (AVGs), the second best option as long-term vascular access for hemodialysis, face major issues of stenosis mainly due to development of intimal hyperplasia at the venous anastomosis which is linked to unfavorable hemodynamic conditions. We have investigated computationally the utility of a coupled sequential venous anastomotic design to replace conventional end-to-side (ETS) venous anastomosis, in order to improve the hemodynamic environment and consequently enhance the patency of AVGs. Two complete vascular access models with the conventional and the proposed venous anastomosis configurations were constructed. Three-dimensional, pulsatile blood flow through the models was simulated, and wall shear stress (WSS)-based hemodynamic parameters were calculated and compared between the two models. Simulation results demonstrated that the proposed anastomotic design provides: (i) a more uniform and smooth flow at the ETS anastomosis, without flow impingement and stagnation point on the artery bed and vortex formation in the heel region of the ETS anastomosis; (ii) more uniform distribution of WSS and substantially lower WSS gradients on the venous wall; and (iii) a spare route for the blood flow to the vein, to avoid re-operation in case of stenosis. The distinctive hemodynamic advantages observed in the proposed anastomotic design can enhance the patency of AVGs.  相似文献   

7.
    
The current study is focused on the numerical investigation of the flow field induced by the unsteady flow in the vicinity of an abdominal aortic aneurysm model. The computational fluid dynamics code used is based on the finite volume method, and it has already been used in various bioflow studies. For modelling the rheological behaviour of blood, the Quemada non-Newtonian model is employed, which is suitable for simulating the two-phase character of blood namely a suspension of blood cells in plasma. For examining its non-Newtonian effects a comparison with a corresponding Newtonian flow is carried out. Furthermore, the investigation is focused on the distribution of the flow-induced forces on the interior wall of the aneurysm and in order to study the development of the distribution with the gradual enlargement of the aneurysm, three different degrees of aneurysm-growth have been assumed. Finally and for examining the effect of the distribution on the aneurysm growth, a comparison is made between the pressure and wall shear-stress distributions at the wall for each growth-degree.  相似文献   

8.
To study the effect of the porous membrane permeability on the hydrodynamics in a parallel-plate coculture flow chamber (PPcFC), we demonstrated the permeability of the porous membrane as a function of some parameters, such as porosity, membrane thickness, pore size and shape of the membrane. The effect of permeability on the flow in the PPcFC was analysed using the commercial software – Fluent. Results showed that the permeability was directly proportional to the thickness, the porosity and the pore size of the membrane, and inversely proportional to the surface shape factor. To ensure the best flow pattern, the inlet velocity range was limited by the membrane permeability and fluid viscosity, and then restricted the available magnitudes of shear rate on the permeable membrane. Our findings are helpful in designing and preparing the biomaterials that have adequate mechanical properties for the functional vascular grafts production, and in using of the flow chamber in various investigations.  相似文献   

9.
    
Understanding of cancellous bone permeability is lacking despite its importance in designing tissue engineering scaffolds for bone regeneration and orthopaedic surgery that relies on infiltration of bone cement into porous cancellous bone. We employed micro-computational fluid dynamics to investigate permeability for 37 cancellous bone specimens, eliminating stringent technical requirements of bench-top testing. Microarchitectural parameters were also determined for the specimens and correlated, using uni-variate and multi-variate regression analyses, against permeability. We determined that bone surface density, trabecular pattern factor, structure model index and trabecular number are other possible predictors of permeability (with R values of 0.47, 0.44, 0.40 and 0.33), in addition to the commonly used porosity parameter (R value of 0.38). Pooling these parameters and performing multi-variate linear regression analysis improved yield the R-value of 0.50, indicating that porosity alone is a poor predictor of cancellous bone permeability and, therefore, other parameters should be included for a better and improved linear model.  相似文献   

10.
    
One of many interesting research activities in biofluidmechanics is dedicated to investigations of locomotion in water. Some of propulsion mechanisms observed in the underwater world are used in the development process of underwater autonomic vehicles (AUV). In order to characterise several solutions according to their manoeuvrability, influence on the surrounding fluid and energetic efficiency, a detailed analysis of fin-like movement is indispensable. In the current paper an analysis of undulatory, oscillatory and combined fin-like movements by means of numerical simulation is carried out. The conservation equation of mass and the conservation equation of momentum axe solved with the Finite Volume Method (FWM) by use of the software CFX-10.0. The undulatory and oscillatory fin movements axe modelled with an equation that is implemented within an additional subroutine and joined with the main solver. N carried out in the computational domain, in which one fin is fixed in a flow-through water duct. Simulations axe carded out in the range of the Re number up to 105. The results show significant influence of applied fin motion on the velocity distribution in the surrounding fluid.  相似文献   

11.
         下载免费PDF全文
A computational fluid dynamics (CFD) model for the analysis of oligonucleotide synthesis in packed bed reactors was developed and used to optimize the scale up of the process. The model includes reaction kinetics data obtained under well defined conditions comparable to the situation in the packed bed. The model was validated in terms of flow conditions and reaction kinetics by comparison with experimental data. Experimental validation and the following model parameter studies by simulation were performed on the basis of a column with 0.3 g oligonucleotide capacity. The scale‐up studies based on CFD modelling were calculated on a 440 g scale (oligonucleotide capacity). © 2014 American Institute of Chemical Engineers Biotechnol. Prog., 30:1048–1056, 2014  相似文献   

12.
Summary Active fibrous septa are a common feature in liver fibrosis and cirrhosis. Their etiology and formation were studied using cultures of tissue fragments or cells included in collagen gels. Liver fragments obtained from patients with cirrhosis or severe schistosomal fibrosis were able to reorganize the gel and to form discrete, interconnecting fibrous septa composed of parallel arrays of collagen, subsequently colonized by migrating connective tissue cells. The same was obtained in cultures of fibrogranulomatous lesions isolated from schistosome-infected mice livers. However, fragments of normal human and murine liver tissue did not show the capacity to form fibrous septa. Septa formation was also obtained in cultures of cell spheroids formed by liver connective tissue cells isolated from human fibrotic or cirrhotic liver tissues, but not with spheroids of normal skin fibroblasts or smooth muscle cells. This experimental model may represent the fibrous septa formation in vivo, depending on the activity of liver connective tissue cells. The ability of tissue fragments or cell spheroids to form septa in collagen gels might reflect the degree of fibrosis present in the liver tissue in vivo. This research was supported by FINEP and CNPq (Brazil) and CNRS (France).  相似文献   

13.
  总被引:9,自引:0,他引:9  
Spinner-flask bioreactors have been used for the production of articular cartilage in vitro. The dynamic environment within bioreactors is known to significantly affect the growth and development of the tissue. The present research focuses on the experimental and numerical characterization of the flow field within a spinner flask operating under conditions used to produce cartilage. Laboratory experiments carried out in a scaled-up model bioreactor employ particle-image velocimetry (PIV) to determine velocity and shear-rate fields in the vicinity of the construct closest to the stir bar, in addition to turbulence properties. Numerical computations calculated using FLUENT, a commercial software package, simulate the flow field in the same model bioreactor under similar operating conditions. In the computations, scaffolds were modeled as both solid and porous media with different permeabilities and flow rates through various faces of the construct nearest the stir bar were examined.  相似文献   

14.
    
We have developed a bioreactor vessel design which has the advantages of simplicity and ease of assembly and disassembly, and with the appropriately determined flow rate, even allows for a scaffold to be suspended freely regardless of its weight. This article reports our experimental and numerical investigations to evaluate the performance of a newly developed non-perfusion conical bioreactor by visualizing the flow through scaffolds with 45 degrees and 90 degrees fiber lay down patterns. The experiments were conducted at the Reynolds numbers (Re) 121, 170, and 218 based on the local velocity and width of scaffolds. The flow fields were captured using short-time exposures of 60 microm particles suspended in the bioreactor and illuminated using a thin laser sheet. The effects of scaffold fiber lay down pattern and Reynolds number were obtained and correspondingly compared to results obtained from a computational fluid dynamics (CFD) software package. The objectives of this article are twofold: to investigate the hypothesis that there may be an insufficient exchange of medium within the interior of the scaffold when using our non-perfusion bioreactor, and second, to compare the flows within and around scaffolds of 45 degrees and 90 degrees fiber lay down patterns. Scaffold porosity was also found to influence flow patterns. It was therefore shown that fluidic transport could be achieved within scaffolds with our bioreactor design, being a non-perfusion vessel. Fluid velocities were generally same of the same or one order lower in magnitude as compared to the inlet flow velocity. Additionally, the 90 degrees fiber lay down pattern scaffold was found to allow for slightly higher fluid velocities within, as compared to the 45 degrees fiber lay down pattern scaffold. This was due to the architecture and pore arrangement of the 90 degrees fiber lay down pattern scaffold, which allows for fluid to flow directly through (channel-like flow).  相似文献   

15.
栗聪  赵元龙  兰天 《古生物学报》2022,61(2):269-279
提要关于古生物生态位和功能形态学方面的研究通常是推测性的,而定量分析工作较少。此外由于缺少现生生物做对比等诸多因素,使得有些假说存在争议。计算流体力学CFD (computational fluid dynamics)在验证这些推测性假说上具有极大的潜力,并为了解古生物的生活环境以及解释生物在进化过程中的形态变化提供了新的契机。COMSOL Multiphysics作为一款多物理场仿真软件,适用于对古生物的CFD模拟,本文以凯里组始海百合Globoeocrinus模型在COMSOL中的流体实验为案例,来论证关于Globoeocrinus螺旋的腕会使附近的水体形成湍性流动进而帮助滤食这一假说的可能性。流体模拟结果表明在水流流速0.01–0.5 m/s的范围内,Globoeocrinus腕周围并没有出现湍性流动的涡,而是形成了低流速域。低流速域的形成有利于增加始海百合滤取食物的概率。同时文章详细介绍了在COMSOL中进行案例研究的操作步骤,以期望帮助更多的古生物研究者理解和应用CFD技术。  相似文献   

16.
17.
The morphology of the nasal cavity in mammals with a good sense of smell includes features that are thought to improve olfactory airflow, such as a dorsal conduit that delivers odours quickly to the olfactory mucosa, an enlarged olfactory recess at the back of the airway, and a clear separation of the olfactory and respiratory regions of the nose. The link between these features and having a good sense of smell has been established by functional examinations of a handful of distantly related mammalian species. In this paper, we provide the first detailed examination of olfactory airflow in a group of closely related species that nevertheless vary in their sense of smell. We study six species of phyllostomid bats that have different airway morphologies and foraging ecologies, which have been linked to differences in olfactory ability or reliance. We hypothesize that differences in morphology correlate with differences in the patterns and rates of airflow, which in turn are consistent with dietary differences. To compare species, we make qualitative and quantitative comparisons of the patterns and rates of airflow through the olfactory region during both inhalation and exhalation across the six species. Contrary to our expectations, we find no clear differences among species in either the patterns of airflow through the airway or in rates of flow through the olfactory region. By and large, olfactory airflow seems to be conserved across species, suggesting that morphological differences appear to be driven by other mechanical demands on the snout, such as breathing and feeding. Olfactory ability may depend on other aspects of the system, such as the neurobiological processing of odours that work within the existing morphology imposed by other functional demands on the nasal cavity.  相似文献   

18.
Indices of the intra-aneurysm hemodynamic environment have been proposed as potentially indicative of their longitudinal outcome. To be useful, the indices need to be used to stratify large study populations and tested against known outcomes. The first objective was to compile the diverse hemodynamic indices reported in the literature. Furthermore, as morphology is often the only patient-specific information available in large population studies, the second objective was to assess how the ranking of aneurysms in a population is affected by the use of steady flow simulation as an approximation to pulsatile flow simulation, even though the former is clearly non-physiological. Sixteen indices of aneurysmal hemodynamics reported in the literature were compiled and refined where needed. It was noted that, in the literature, these global indices of flow were always time-averaged over the cardiac cycle. Steady and pulsatile flow simulations were performed on a population of 198 patient-specific and 30 idealised aneurysm models. All proposed hemodynamic indices were estimated and compared between the two simulations. It was found that steady and pulsatile flow simulations had a strong linear dependence (r ≥ 0.99 for 14 indices; r ≥ 0.97 for 2 others) and rank the aneurysms in an almost identical fashion (ρ ≥ 0.99 for 14 indices; ρ ≥ 0.96 for other 2). When geometry is the only measured piece of information available, stratification of aneurysms based on hemodynamic indices reduces to being a physically grounded substitute for stratification of aneurysms based on morphology. Under such circumstances, steady flow simulations may be just as effective as pulsatile flow simulation for estimating most key indices currently reported in the literature.  相似文献   

19.
    
Over 3.7 billion years of Earth history, life has evolved complex adaptations to help navigate and interact with the fluid environment. Consequently, fluid dynamics has become a powerful tool for studying ancient fossils, providing insights into the palaeobiology and palaeoecology of extinct organisms from across the tree of life. In recent years, this approach has been extended to the Ediacara biota, an enigmatic assemblage of Neoproterozoic soft-bodied organisms that represent the first major radiation of macroscopic eukaryotes. Reconstructing the ways in which Ediacaran organisms interacted with the fluids provides new insights into how these organisms fed, moved, and interacted within communities. Here, we provide an in-depth review of fluid physics aimed at palaeobiologists, in which we dispel misconceptions related to the Reynolds number and associated flow conditions, and specify the governing equations of fluid dynamics. We then review recent advances in Ediacaran palaeobiology resulting from the application of computational fluid dynamics (CFD). We provide a worked example and account of best practice in CFD analyses of fossils, including the first large eddy simulation (LES) experiment performed on extinct organisms. Lastly, we identify key questions, barriers, and emerging techniques in fluid dynamics, which will not only allow us to understand the earliest animal ecosystems better, but will also help to develop new palaeobiological tools for studying ancient life.  相似文献   

20.
  总被引:2,自引:0,他引:2  
Natural cartilage remodels both in vivo and in vitro in response to mechanical stresses, hence mechanical stimulation is believed to be a potential tool to modulate extra-cellular matrix synthesis in tissue-engineered cartilage. Fluid-induced shear is known to enhance chondrogenesis in engineered cartilage constructs. The quantification of the hydrodynamic environment is a condition required to study the biochemical response to shear of 3D engineered cell systems. We developed a computational model of culture medium flow through the microstructure of a porous scaffold, during direct- perfused culture. The 3D solid model of the scaffold micro-geometry was reconstructed from 250 micro-computed tomography (micro-CT) images. The results of the fluid dynamic simulations were analyzed at the central portions of the fluid domain, to avoid boundary effects. The average, median and mode shear stress values calculated at the scaffold walls were 3.48, 2.90, and 2.45 mPa respectively, at a flow rate of 0.5 cm(3)/min, perfused through a 15 mm diameter scaffold, at an inlet fluid velocity of 53 microm/s. These results were compared to results estimated using a simplified micro-scale model and to results estimated using an analytical macro-scale porous model. The predictions given by the CT-based model are being used in conjunction with an experimental bioreactor model, in order to quantify the effects of fluid-dynamic shear on the growth modulation of tissue-engineered cartilage constructs, to potentially enhance tissue growth in vitro.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号