首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Microcosm biofilms formed in microplates have demonstrated complex community dynamics similar to natural dental biofilm. No simplified microcosm models to evaluate enamel demineralization and dose-response effect to anticariogenic therapies have yet been established, thus this study was designed to develop a pre-clinical model fulfilling this purpose. Experiments were carried out to establish the time of biofilm formation and the sucrose concentration and exposure regimen. Biofilms were initiated from saliva and grown for up to 10 days on bovine enamel discs in 24-well plates, with a saliva analogue medium. Data were collected as pH readings and thepercentage enamel surface hardness change. A dose-response evaluation was performed with chlorhexidine, which significantly affected the pH and mineral loss. Overall, the established model parameters, 5 days of biofilm growth with intermittent 1% sucrose exposure of 6 h per day, was suitable as a pre-clinical model for enamel demineralization and dose-response studies.  相似文献   

2.
Abstract

This work evaluated the effects of commercial toothpastes and mouth rinses containing natural/herbal agents on biofilm viability, extracellular polysaccharide (EPS) production and on enamel demineralization in vitro. Microcosm biofilm was produced on bovine enamel for 5?days and treated daily with: Orgânico natural® (toothpaste/mouth rinse), Boni Natural Menta &; Malaleuca® (toothpaste/mouth rinse), Propolis &; Myrrh® (toothpaste), Colgate Total 12 Clean Mint® (toothpaste, positive control), Malvatricin® Plus (mouth rinse), PerioGard® (mouth rinse, positive control) or PBS (negative control). Tom’s Propolis &; Myrrh® and Colgate Total 12® toothpastes and Malvatricin® Plus and PerioGard® mouth rinses significantly reduced biofilm viability (p?® had significant effects on biofilm thickness and EPS. Despite the indication that Tom’s Propolis &; Myrrh® significantly reduced lesion depth, only Colgate Total 12® significantly reduced mineral loss. Malvatricin® Plus significantly reduced mineral loss and lesion depth, as did PerioGard®. Some herbal products, Malvatricin® Plus and Tom’s Propolis &; Myrrh®, showed anticaries effects.  相似文献   

3.
The purpose of this study was to evaluate the antimicrobial (anti-biofilm) and anti-caries (enamel demineralization prevention) effects of Malva sylvestris (Malvatricin® Plus) compared with known antimicrobial mouthrinses. Microcosm biofilm was produced on enamel, using inoculum from pooled human saliva mixed with McBain saliva (0.2% sucrose) for 14 days. The biofilm was treated with mouthrinses for 1 min day?1. Oral-B® Complete, Listerine® Zero and Malvatricin® Plus had the greatest effect on the reduction of biofilm viability (p < 0.0001). On the other hand, lactic acid production was reduced significantly with PerioGard®, Noplak® Max and Listerine® Zero compared with the control (p < 0.0001). No significant differences were found among the mouthrinses with respect to the colony-forming unit counting (total microorganisms, total streptococci, mutans streptococci and lactobacilli) and extracellular polysaccharide production. Enamel demineralization was reduced significantly with PerioGard®, Noplak® Max and Malvatricin® Plus compared with the control (p < 0.0001). Malva sylvestris has a comparable anti-caries effect to chlorhexidine mouthrinses.  相似文献   

4.
Some dynamic biofilm models for dental caries development are limited as they require multiple experiments and do not allow independent biofilm growth units, making them expensive and time-consuming. This study aimed to develop and test an in vitro dynamic microcosm biofilm model for caries lesion development and for dose-response to chlorhexidine. Microcosm biofilms were grown under two different protocols from saliva on bovine enamel discs for up to 21 days. The study outcomes were as follows: the percentage of enamel surface hardness change, integrated hardness loss, and the CFU counts from the biofilms formed. The measured outcomes, mineral loss and CFU counts showed dose-response effects as a result of the treatment with chlorhexidine. Overall, the findings suggest that biofilm growth for seven days with 0.06 ml min?1 salivary flow under exposure to 5% sucrose (3 × daily, 0.25 ml min?1, 6 min) was suitable as a pre-clinical model for enamel demineralization and antimicrobial studies.  相似文献   

5.
6.
This study aimed to correlate the cariogenic responsiveness of biofilms generated from the saliva of mothers and children. The mother–child pairs were classified according to the children’s caries levels: caries-free, early childhood caries (ECC) or severe ECC. Microcosm biofilms were grown on enamel discs for 10?days. Factors under evaluation were caries experience levels, inoculum source (mothers and children) and growth conditions including cariogenic challenge (growth medium provided with and without sucrose) and no cariogenic challenge (growth medium sucrose-free). Statistical analysis was performed with ANOVA and Tukey’s test, and the Spearman correlation test. Regular sucrose exposure resulted in a higher surface hardness change (%SHC). The correlation between biofilms formed from saliva of mother–child pairs was significant regarding pH, total aciduric microorganisms and lactobacilli counts under cariogenic challenge. Biofilm growth originating from mother–child pairs under regular sucrose exposure promoted the same cariogenic response independently of caries experience and the microbiological profile of the donors.  相似文献   

7.
牙菌斑生物膜是附着于牙釉质表面,由复杂的微生物群落构成的一种聚集体。牙菌斑生物膜的形成与生长对口腔健康有着直接或间接的影响,许多研究证实口腔疾病如龋齿和牙周病都与细菌的积累及牙菌斑的形成有关。在牙菌斑生物膜形态建成过程中,牙齿表面最初的定殖菌对生物膜的微生物组成和结构至关重要,这些初级定殖菌决定了后续与之结合形成共生体的微生物种类和数量。不同的微生物组成可能在与生物膜形成相关的口腔病理状况中发挥不同的作用。因此,本文就牙菌斑生物膜的生长及控制进行综述,介绍其微生物的早期定殖和成熟过程、以及通过物理和化学方法对牙菌斑生物膜的控制,以期为了解牙菌斑生物膜的形成机制及相关口腔疾病的预防和治疗提供有价值的参考。  相似文献   

8.
Microcosm biofilms formed in microplates have demonstrated complex community dynamics similar to natural dental biofilm. No simplified microcosm models to evaluate enamel demineralization and dose-response effect to anticariogenic therapies have yet been established, thus this study was designed to develop a pre-clinical model fulfilling this purpose. Experiments were carried out to establish the time of biofilm formation and the sucrose concentration and exposure regimen. Biofilms were initiated from saliva and grown for up to 10 days on bovine enamel discs in 24-well plates, with a saliva analogue medium. Data were collected as pH readings and the percentage enamel surface hardness change. A dose-response evaluation was performed with chlorhexidine, which significantly affected the pH and mineral loss. Overall, the established model parameters, 5 days of biofilm growth with intermittent 1% sucrose exposure of 6 h per day, was suitable as a pre-clinical model for enamel demineralization and dose-response studies.  相似文献   

9.
Aims:  Common belief suggests that starch is less cariogenic than sugar; however, the related literature is quite controversial. We aimed to compare cariogenic and microbiological effects of soluble starch in both a standard animal model and an oral biofilm system, and to assess the possible substitution of the animal model.
Methods and Results:  Six-species biofilms were grown anaerobically on enamel discs in saliva and medium with glucose/sucrose, starch (average molecular weight of 5000, average polymerization grade of 31), or mixtures thereof. After 64·5 h of biofilm formation, the microbiota were quantitated by cultivation and demineralization was measured by quantitative light-induced fluorescence. To assess caries incidence in rats, the same microbiota as in the biofilm experiments were applied. The animals were fed diets containing either glucose, glucose/sucrose, glucose/sucrose/starch or starch alone. Results with both models show that demineralization was significantly smaller with starch than sucrose.
Conclusions:  The data demonstrate that soluble starch is substantially less cariogenic than glucose/sucrose.
Significance and Impact of the Study:  By leading to the same scientific evidence as its in vivo counterpart, the described in vitro biofilm system provides an interesting and valuable tool in the quest to reduce experimentation with animals.  相似文献   

10.
11.
12.
7-Epiclusianone (7-epi), a novel naturally occurring compound isolated from Rheedia brasiliensis, effectively inhibits the synthesis of exopolymers and biofilm formation by Streptococcus mutans. In the present study, the ability of 7-epi, alone or in combination with fluoride (F), to disrupt biofilm development and pathogenicity of S. mutans in vivo was examined using a rodent model of dental caries. Treatment (twice-daily, 60s exposure) with 7-epi, alone or in combination with 125 ppm F, resulted in biofilms with less biomass and fewer insoluble glucans than did those treated with vehicle-control, and they also displayed significant cariostatic effects in vivo (p < 0.05). The combination 7-epi + 125 ppm F was as effective as 250 ppm F (positive-control) in reducing the development of both smooth- and sulcal-caries. No histopathological alterations were observed in the animals after the experimental period. The data show that 7-epiclusianone is a novel and effective antibiofilm/anticaries agent, which may enhance the cariostatic properties of fluoride.  相似文献   

13.
A model of biofilm detachment   总被引:4,自引:0,他引:4  
A general mathematical framework for modeling biofilm detachment is presented. The approach is founded on a material balance on biomass that equates the detachment rate to the product of a detachment frequency and a detaching particle mass. The model provides a theoretical basis for deriving many of the empirical detachment rate expressions in common use and can thus lend some insight into their physical and biological significance. By allowing for variation in the detachment frequency with depth in the biofilm, the model permits derivation of detachment expressions that reflect a dependence on chemical or physiological gradients in the biofilm. Analysis of literature data sets from two different biofilm systems suggests, in both cases, that detachment is a growth-associated phenomenon. (c) 1993 John Wiley & Sons, Inc.  相似文献   

14.
This work presents a multispecies biofilm model that describes the co‐existence of nitrate‐ and sulfate‐reducing bacteria in the H2‐based membrane biofilm reactor (MBfR). The new model adapts the framework of a biofilm model for simultaneous nitrate and perchlorate removal by considering the unique metabolic and physiological characteristics of autotrophic sulfate‐reducing bacteria that use H2 as their electron donor. To evaluate the model, the simulated effluent H2, UAP (substrate‐utilization‐associated products), and BAP (biomass‐associated products) concentrations are compared to experimental results, and the simulated biomass distributions are compared to real‐time quantitative polymerase chain reaction (qPCR) data in the experiments for parameter optimization. Model outputs and experimental results match for all major trends and explain when sulfate reduction does or does not occur in parallel with denitrification. The onset of sulfate reduction occurs only when the nitrate concentration at the fiber's outer surface is low enough so that the growth rate of the denitrifying bacteria is equal to that of the sulfate‐reducing bacteria. An example shows how to use the model to design an MBfR that achieves satisfactory nitrate reduction, but suppresses sulfate reduction. Biotechnol. Bioeng. 2013; 110: 763–772. © 2012 Wiley Periodicals, Inc.  相似文献   

15.
Streptococcus mutans contributes significantly to dental caries, which arises from homoeostasic imbalance between host and microbiota. We hypothesized that Lactobacillus sp. inhibits growth, biofilm formation and gene expression of Streptococcus mutans. Antibacterial (agar diffusion method) and antibiofilm (crystal violet assay) characteristics of probiotic Lactobacillus sp. against Streptococcus mutans (ATCC 25175) were evaluated. We investigated whether Lactobacillus casei (ATCC 393), Lactobacillus reuteri (ATCC 23272), Lactobacillus plantarum (ATCC 14917) or Lactobacillus salivarius (ATCC 11741) inhibit expression of Streptococcus mutans genes involved in biofilm formation, quorum sensing or stress survival using quantitative real‐time polymerase chain reaction (qPCR). Growth changes (OD600) in the presence of pH‐neutralized, catalase‐treated or trypsin‐treated Lactobacillus sp. supernatants were assessed to identify roles of organic acids, peroxides and bacteriocin. Susceptibility testing indicated antibacterial (pH‐dependent) and antibiofilm activities of Lactobacillus sp. against Streptococcus mutans. Scanning electron microscopy revealed reduction in microcolony formation and exopolysaccharide structural changes. Of the oral normal flora, L. salivarius exhibited the highest antibiofilm and peroxide‐dependent antimicrobial activities. All biofilm‐forming cells treated with Lactobacillus sp. supernatants showed reduced expression of genes involved in exopolysaccharide production, acid tolerance and quorum sensing. Thus, Lactobacillus sp. can inhibit tooth decay by limiting growth and virulence properties of Streptococcus mutans.  相似文献   

16.
A steady-state model for quantifying the space competition in multispecies biofilms is developed. The model includes multiple active species, inert biomass, substrate utilization and diffusion within the biofilm, external mass transport, and detachment phenomena. It predicts the steady-state values of biofilm thickness, species distribution, and substrate fluxes. An experimental evaluation is carried out in completely mixed biofilm reactors in which slow-growing nitrifying bacteria compete with acetate-utilizing heterotrophs. The experimental results show that the model successfully describes the space competition. In particular, increasing acetate concentrations causes NH(4) (+)-N fluxes to decrease, because nitrifiers are forced deeper into the biofilm, where they experience greater mass-transport resistance.  相似文献   

17.
AIMS: A nonthermal atmospheric plasma, designed for biomedical applications, was tested for its antimicrobial activity against biofilm cultures of a key cariogenic bacterium Streptococcus mutans. METHODS AND RESULTS: The Strep. mutans biofilms were grown with and without 0.15% sucrose. A chlorhexidine digluconate rinse (0.2%) was used as a positive antimicrobial reference. The presence of sucrose and the frequency of plasma application during growth were shown to have a significant effect on the response to treatment and antibacterial activity. CONCLUSIONS: A single plasma treatment for 1 min on biofilms cultured without sucrose caused no re-growth within the observation period. However, with either single or repeated plasma treatments of 1 min, on biofilms cultured with 0.15% sucrose, growth was only reduced. SIGNIFICANCE AND IMPACT OF THE STUDY: In summary, there may be a role for nonthermal plasma therapies in dental procedures. Sucrose and associated growth conditions may be a factor in the survival of oral biofilms after treatment.  相似文献   

18.
AIMS: To develop a perfusion biofilm system to model tongue biofilm microflora and their physiological response to sulfur-containing substrates (S-substrates) in terms of volatile sulfide compound (VSC) production. METHODS AND RESULTS: Tongue-scrape inocula were used to establish in vitro perfusion biofilms which were examined in terms of ecological composition using culture-dependent and independent (PCR-DGGE) approaches. VSC-specific activity of cells was measured by a cell suspension assay, using a portable industrial sulfide monitor which was also used to monitor VSC production from biofilms in situ. Quasi steady states were achieved by 48 h and continued to 96 h. The mean (+/-SEM) growth rate for 72-h biofilms (n=4) was micro=0.014 h(-1) (+/-0.005 h(-1)). Comparison of biofilms, perfusate and original inoculum showed their ecological composition to be similar (Pearson coefficient>0.64). Perfusate and biofilm cells derived from the same condition (co-sampled) were equivalent with regard to VSC-specific activities which were up-regulated in the presence of S-substrates. CONCLUSIONS: The model maintained a stable tongue microcosm suitable for studying VSC production; biofilm growth in the presence of S-substrates up-regulated VSC activity. SIGNIFICANCE AND IMPACT OF THE STUDY: The method is apt for studying ecological and physiological aspects of oral biofilms and could be useful for screening inhibitory agents.  相似文献   

19.
Abstract

This study proposes a microcosm biofilm (MiB) model for the study of vulvovaginal candidiasis (VVC). Different conditions that mimic the vaginal environment were tested for MiB formation. The best growth conditions were obtained with samples incubated in vaginal fluid simulator medium pH 4.5 at 35?°C under a microaerophilic atmosphere. MiBs were evaluated for growth kinetics, fluconazole susceptibility and morphology. Samples containing high numbers of bacteria were analyzed for metagenomics. At 48?h, MiBs presented a higher cell density (CFU ml?1), a higher biomass and tolerance to fluconazole than their corresponding monospecies biofilms. Morphological analysis of MiBs revealed blastoconidia preferentially adhered to epithelial cells. Abundant Lactobacillus spp. were detected in two clinical samples; their MiBs showed a lower biomass and a higher fluconazole susceptibility. The proposed model proved to be a useful tool for the study of the complex microbial relationship in the vaginal environment, and may help to find new strategies for VVC control.  相似文献   

20.
A mathematical model is proposed for the fluidized bed biofilm reactor (FBBR). For individual biofilm-covered particles (bioparticles) within the reactor, an analysis of intrabiofilm mass transfer and simultaneous intrinsic zero order reaction yields an effectiveness factor expression which is a function of the modified, zero order Thiele modulus, Φ0,m. This expression is linked to a one-dimensional reactor flow model and a fluidization model to yield an overall reactor model describing convective transport and simultaneous biochemical conversion of substrate within a FBBR. For Φ0,m<1.15, FBBR is mass transfer limited and 0.45 order kinetics are observed. For Φ0,m<1.15, mass transfer limitations are insignificant and intrinsic zero order kinetics are observed. A sensitivity analysis using the proposed mathematical model indicates that biofilm thickness and media size are the two most important operating parameters. These two parameters can be optimized simultaneously for a specific application. The proposed model provides a rational approach for FBBR design.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号