首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Rhizomania is a serious disease of sugar beet, caused by beet necrotic yellow vein virus (BNYVV). The disease can only be controlled by the use of resistant cultivars. The accession Holly contains a single dominant gene for resistance, called Rz. The identification of a locus for resistance that differs from Rz would provide possibilities to produce cultivars with multiple resistance to BNYVV. Inheritance of resistance to BNYVV was studied by screening progenies of crosses between resistant plants of the accessions Beta vulgaris subsp. maritima WB42 and B. vulgaris subsp. vulgaris Holly-1–4 or R104. Observed and expected segregation ratios were compared to elucidate whether the resistance genes in the three accessions are alleles or situated on different loci. STS markers, linked to the genes for resistance, were used to study the segregation in more detail. The results demonstrated that the genes for resistance to BNYVV inHolly-1-4 and WB42 are closely linked. The gene for resistance in R104 is at the same locus as in Holly-1-4, and also closely linked to the gene in WB42. As the Holly resistance gene has been named Rz, the name Rz2 is proposed to refer to the resistance gene in WB42. Consequently, the gene Rz should be referred to as Rz1. Received: 29 October 1998 / Accepted: 12 March 1999  相似文献   

3.
The storage root (taproot) of sugar beet (Beta vulgaris L.) originates from hypocotyl and primary root and contains many different tissues such as central xylem, primary and secondary cambium, secondary xylem and phloem, and parenchyma. It was the aim of this work to characterize the promoters of three taproot-expressed genes with respect to their tissue specificity. To investigate this, promoters for the genes Tlp, His1-r, and Mll were cloned from sugar beet, linked to reporter genes and transformed into sugar beet and tobacco. Reporter gene expression analysis in transgenic sugar beet plants revealed that all three promoters are active in the storage root. Expression in storage root tissues is either restricted to the vascular zone (Tlp, His1-r) or is observed in the whole organ (Mll). The Mll gene is highly organ specific throughout different developmental stages of the sugar beet. In tobacco, the Tlp and Mll promoters drive reporter gene expression preferentially in hypocotyl and roots. The properties of the Mll promoter may be advantageous for the modification of sucrose metabolism in storage roots.  相似文献   

4.
We present draft genome assemblies of Beta patula, a critically endangered wild beet endemic to the Madeira archipelago, and of the closely related Beta vulgaris ssp. maritima (sea beet). Evidence‐based reference gene sets for B. patula and sea beet were generated, consisting of 25 127 and 27 662 genes, respectively. The genomes and gene sets of the two wild beets were compared with their cultivated sister taxon B. vulgaris ssp. vulgaris (sugar beet). Large syntenic regions were identified, and a display tool for automatic genome‐wide synteny image generation was developed. Phylogenetic analysis based on 9861 genes showing 1:1:1 orthology supported the close relationship of B. patula to sea beet and sugar beet. A comparative analysis of the Rz2 locus, responsible for rhizomania resistance, suggested that the sequenced B. patula accession was rhizomania susceptible. Reference karyotypes for the two wild beets were established, and genomic rearrangements were detected. We consider our data as highly valuable and comprehensive resources for wild beet studies, B. patula conservation management, and sugar beet breeding research.  相似文献   

5.
Many plant viruses with monopartite or bipartite genomes have been developed as efficient expression vectors of foreign recombinant proteins. Nonetheless, due to lack of multiple insertion sites in these plant viruses, it is still a big challenge to simultaneously express multiple foreign proteins in single cells. The genome of Beet necrotic yellow vein virus (BNYVV) offers an attractive system for expression of multiple foreign proteins owning to a multipartite genome composed of five positive‐stranded RNAs. Here, we have established a BNYVV full‐length infectious cDNA clone under the control of the Cauliflower mosaic virus 35S promoter. We further developed a set of BNYVV‐based vectors that permit efficient expression of four recombinant proteins, including some large proteins with lengths up to 880 amino acids in the model plant Nicotiana benthamiana and native host sugar beet plants. These vectors can be used to investigate the subcellular co‐localization of multiple proteins in leaf, root and stem tissues of systemically infected plants. Moreover, the BNYVV‐based vectors were used to deliver NbPDS guide RNAs for genome editing in transgenic plants expressing Cas9, which induced a photobleached phenotype in systemically infected leaves. Collectively, the BNYVV‐based vectors will facilitate genomic research and expression of multiple proteins, in sugar beet and related crop plants.  相似文献   

6.
二倍体栽培甜菜与白花甜菜杂交、进一步回交而获得的单体附加系M14,其染色体组成中除了含有18条栽培甜菜染色体外,还附加有一条野生白花甜菜第9号染色体,该附加染色体通过母本的传递率为96.5%;单体附加系传递率如此高的原因是因为M14中有无融合生殖基因的存在。本实验采用mRNA差异展示技术对甜菜无融合生殖品系M14和正常有性生殖的二倍体栽培甜菜A2Y花蕾减数分裂时期的基因表达进行了差异分析。采用GT15A,GT15G,GT15C 3种锚定引物,共筛选了20个随机引物,通过RT-PCR检测,获得了6个阳性差异表达的cDNA片段,应用NCBI的BLASTx软件对测序结果进行同源序列、相似序列检索,为进一步克隆无融合生殖基因提供侯选cDNA片段。  相似文献   

7.
Beet necrotic yellow vein virus (BNYVV) is the most devastating pathogen of sugar beet worldwide. This virus has been reported in the majority of sugar beet growing regions of Iran as well. For the present study, we collected samples from different sugar beet varieties with suspected symptoms of BNYVV from the main important sugar beet growing regions in eight provinces of Iran. Infection of collected samples to BNYVV was tested by ELISA and RT-PCR. Upon testing of 167 collected samples of BNYVV suspected through ELISA and RT-PCR, 115 (68.9%) were infected. Different incidences of BNYVV through surveyed provinces may represent the presence of diverse infective viral sources or resistance genes in tested sugar beet varieties which need further attempts to develop control strategies. Results also showed that BNYVV has been recently distributed throughout some surveyed regions. Otherwise, trace infection or resistance to BNYVV infection in some varieties of distinct regions may represent proper sources of resistance to BNYVV.  相似文献   

8.
Sugar beet (Beta vulgaris) is an important arable crop, traditionally used for sugar extraction, but more recently, for biofuel production. A wide range of pests, including beet cyst nematode (Heterodera schachtii), root‐knot nematodes (Meloidogyne spp.), green peach aphids (Myzus persicae) and beet root maggot (Tetanops myopaeformis), infest the roots or leaves of sugar beet, which leads to yield loss directly or through transmission of beet pathogens such as viruses. Conventional pest control approaches based on chemical application have led to high economic costs. Development of pest‐resistant sugar beet varieties could play an important role towards sustainable crop production while minimising environmental impact. Intensive Beta germplasm screening has been fruitful, and genetic lines resistant to nematodes, aphids and root maggot have been identified and integrated into sugar beet breeding programmes. A small number of genes responding to pest attack have been cloned from sugar beet and wild Beta species. This trend will continue towards a detailed understanding of the molecular mechanism of insect–host plant interactions and host resistance. Molecular biotechnological techniques have shown promise in developing transgenic pest resistance varieties at an accelerated speed with high accuracy. The use of transgenic technology is discussed with regard to biodiversity and food safety.  相似文献   

9.
The genus Beta L. is a morphologically and genetically variable group composed of wild, weedy, and domesticated forms that are used for sugar production or as vegetables. In this study, we have evaluated genetic variation in 64 germplasm accessions of wild and domesticated beets and examined the origin of wild beet accessions in California using allozyme analysis. UPGMA analysis showed overall that domesticated and wild beets form genetically coherent groups. Wild beets in California have two different origins, from European Beta vulgaris or from Beta macrocarpa. Population-level patterns of allozyme variation for wild California beets related to B. vulgaris suggest that those populations evolved from naturalized populations of the cultivated B. vulgaris ssp. vulgaris which had hybridized to varying degrees with the sea beets B. vulgaris ssp. maritima. Wild California beets related to B. macrocarpa are essentially genetically identical to European accessions. In addition, we found substantial evidence for hybridization and introgression of B. vulgaris alleles in one B. macrocarpa accession in California. The obligate outcrosser B. vulgaris exhibits more allelic diversity than the self-compatible B. macrocarpa. Beta vulgaris ssp. maritima exhibits more genetic diversity than domesticated B. vulgaris ssp. vulgaris. Received: 2 November 1998 / Accepted: 29 April 1999  相似文献   

10.
The methylation of cytosines shapes the epigenetic landscape of plant genomes, coordinates transgenerational epigenetic inheritance, represses the activity of transposable elements (TEs), affects gene expression and, hence, can influence the phenotype. Sugar beet (Beta vulgaris ssp. vulgaris), an important crop that accounts for 30% of worldwide sugar needs, has a relatively small genome size (758 Mbp) consisting of approximately 485 Mbp repetitive DNA (64%), in particular satellite DNA, retrotransposons and DNA transposons. Genome‐wide cytosine methylation in the sugar beet genome was studied in leaves and leaf‐derived callus with a focus on repetitive sequences, including retrotransposons and DNA transposons, the major groups of repetitive DNA sequences, and compared with gene methylation. Genes showed a specific methylation pattern for CG, CHG (H = A, C, and T) and CHH sites, whereas the TE pattern differed, depending on the TE class (class 1, retrotransposons and class 2, DNA transposons). Along genes and TEs, CG and CHG methylation was higher than that of adjacent genomic regions. In contrast to the relatively low CHH methylation in retrotransposons and genes, the level of CHH methylation in DNA transposons was strongly increased, pointing to a functional role of asymmetric methylation in DNA transposon silencing. Comparison of genome‐wide DNA methylation between sugar beet leaves and callus revealed a differential methylation upon tissue culture. Potential epialleles were hypomethylated (lower methylation) at CG and CHG sites in retrotransposons and genes and hypermethylated (higher methylation) at CHH sites in DNA transposons of callus when compared with leaves.  相似文献   

11.
Summary Mitochondrial DNA (mtDNA) from fertile (N) and possibly new cytoplasmic male sterile (CMS) genotypes was studied in the sugar beet Beta vulgaris L. It was found by restriction endonuclease analysis that BMC-CMS, a cytoplasm that was derived from the wild beet Beta maritima, contained a unique type of mtDNA which is distinguishable from both the N and S-CMS, the only other CMS genotype that is currently availabe in B. vulgaris L. The organization of three genes: coxI, coxII and cob, was analyzed by hybridization with heterologous probes from maize. These genes have a similar structure in N and BMC-CMS that is different from S-CMS. It is concluded that BMC-CMS is a novel CMS genotype in the sugar beet.  相似文献   

12.
Sugar beet root maggot (SBRM, Tetanops myopaeformis von Röder) is a major but poorly understood insect pest of sugar beet (Beta vulgaris L.). The molecular mechanisms underlying plant defense responses are well documented, however, little information is available about complementary mechanisms for insect adaptive responses to overcome host resistance. To date, no studies have been published on SBRM gene expression profiling. Suppressive subtractive hybridization (SSH) generated more than 300 SBRM ESTs differentially expressed in the interaction of the pest with a moderately resistant (F1016) and a susceptible (F1010) sugar beet line. Blast2GO v. 3.2 search indicated that over 40% of the differentially expressed genes had known functions, primarily driven by fruit fly D. melanogaster genes. Expression patterns of 18 selected EST clones were confirmed by RT‐PCR analysis. Gene Ontology (GO) analysis predicted a dominance of metabolic and catalytic genes involved in the interaction of SBRM with its host. SBRM genes functioning during development, regulation, cellular process, signaling and under stress conditions were annotated. SBRM genes that were common or unique in response to resistant or susceptible interactions with the host were identified and their possible roles in insect responses to the host are discussed.  相似文献   

13.
Genetic transformation of the sugar beet plastome   总被引:3,自引:0,他引:3  
  相似文献   

14.
The ribosome‐inactivating protein BE27 from sugar beet (Beta vulgaris L.) leaves is an apoplastic protein induced by signalling compounds, such as hydrogen peroxide and salicylic acid, which has been reported to be involved in defence against viruses. Here, we report that, at a concentration much lower than that present in the apoplast, BE27 displays antifungal activity against the green mould Penicillium digitatum, a necrotrophic fungus that colonizes wounds and grows in the inter‐ and intracellular spaces of the tissues of several edible plants. BE27 is able to enter into the cytosol and kill fungal cells, thus arresting the growth of the fungus. The mechanism of action seems to involve ribosomal RNA (rRNA) N‐glycosylase activity on the sarcin–ricin loop of the major rRNA which inactivates irreversibly the fungal ribosomes, thus inhibiting protein synthesis. We compared the C‐terminus of the BE27 structure with antifungal plant defensins and hypothesize that a structural motif composed of an α‐helix and a β‐hairpin, similar to the γ‐core motif of defensins, might contribute to the specific interaction with the fungal plasma membranes, allowing the protein to enter into the cell.  相似文献   

15.
Summary Two cytoplasms, N and S, are used in the breeding of sugar beet, Beta vulgaris var. altissima. These cytoplasms can be distinguished by their mitochondrial DNA. In an attempt to detect new cytoplasms, we compared the restriction profiles of chloroplast and mitochondrial DNA from five different cultivars of Beta vulgaris. All restriction patterns of chloroplast DNA were identical. With the exception of sugar beet with S-cytoplasm, all cultivars studied showed the same restriction profile of mitochondrial DNA, indicating that these cultivars all contain the N-cytoplasm. These results are discussed with regard to the large morphological differences of the cultivars and the cytoplasmic variability found in natural populations of the wild beet, Beta maritima.  相似文献   

16.
Eight microsatellite loci were characterized within two cultivated beet (Beta vulgaris ssp. vulgaris) accessions and one accession of the wild progenitor of domesticated sugar beet, Beta vulgaris ssp. maritima. Allele diversity was high, yielding two to 11 alleles per locus. Polymorphism information content (PIC) values obtained for these eight loci where also high and indicate the highly informative nature of the microsatellites presented here. These described markers add to a small set of publicly available microsatellite markers for beet and will be instrumental in identifying patterns of genetic diversity and origins of domestication.  相似文献   

17.
Nucleotide‐binding (NB‐ARC), leucine‐rich‐repeat genes (NLRs) account for 60.8% of resistance (R) genes molecularly characterized from plants. NLRs exist as large gene families prone to tandem duplication and transposition, with high sequence diversity among crops and their wild relatives. This diversity can be a source of new disease resistance, but difficulty in distinguishing specific sequences from homologous gene family members hinders characterization of resistance for improving crop varieties. Current genome sequencing and assembly technologies, especially those using long‐read sequencing, are improving resolution of repeat‐rich genomic regions and clarifying locations of duplicated genes, such as NLRs. Using the conserved NB‐ARC domain as a model, 231 tentative NB‐ARC loci were identified in a highly contiguous genome assembly of sugar beet, revealing diverged and truncated NB‐ARC signatures as well as full‐length sequences. The NB‐ARC‐associated proteins contained NLR resistance gene domains, including TIR, CC and LRR, as well as other integrated domains. Phylogenetic relationships of partial and complete domains were determined, and patterns of physical clustering in the genome were evaluated. Comparison of sugar beet NB‐ARC domains to validated R‐genes from monocots and eudicots suggested extensive Beta vulgaris‐specific subfamily expansions. The NLR landscape in the rhizomania resistance conferring Rz region of Chromosome 3 was characterized, identifying 26 NLR‐like sequences spanning 20 MB. This work presents the first detailed view of NLR family composition in a member of the Caryophyllales, builds a foundation for additional disease resistance work in B. vulgaris, and demonstrates an additional nucleic‐acid‐based method for NLR prediction in non‐model plant species.  相似文献   

18.
Transformed Beta vulgaris L. suspension cultures were obtained after cocultivation of sugarbeet cells with Agrobacterium tumefaciens harbouring a binary vector containing the coat protein gene of beet necrotic yellow vein virus inserted between the kanamycin resistance gene and a ß-glucuronidase reporter gene. Protoplasts were isolated both from untransformed cells, and from transformed cells expressing the viral coat protein, and both were then infected with beet necrotic yellow vein virus. Comparison of the levels of infectivity shows that the expression of the coat protein gene in sugarbeet protoplasts mediates high levels of protection against infection by beet necrotic yellow vein virus.Abbreviations TMV Tobacco Mosaic Virus - CP Coat Protein - BNYVV Beet Necrotic Yellow Vein Virus - ß-Glu ß-glucuronidase - MS Murashige and Skoog (1962) - PEG Polyethylene glycol - npt neomycin phosphotransferase - nos nopaline synthase - FITC fluoresceine isothiocyanate - IAA indole acetic acid - BAP benzyl amino purine - MES 2-[N-Morpholino]ethane sulfonic acid - IgG Immunoglobulin G - nt nucleotide  相似文献   

19.
Sugar beet (Beta vulgaris L.) is highly susceptible to the beet cyst nematode (Heterodera schachtii Schm.). Three resistance genes originating from the wild beets B. procumbens (Hs1 pro-1) and B. webbiana (Hs1 web-1, Hs2 web-7) have been transferred to sugar beet via species hybridization. We describe the genetic localization of the nematode resistance genes in four different sugar beet lines using segregating F2 populations and RFLP markers from our current sugar beet linkage map. The mapping studies yielded a surprising result. Although the four parental lines carrying the wild beet translocations were not related to each other, the four genes mapped to the same locus in sugar beet independent of the original translocation event. Close linkage (0–4.6 cM) was found with marker loci at one end of linkage group IV. In two populations, RFLP loci showed segregation distortion due to gametic selection. For the first time, the non-randomness of the translocation process promoting gene transfer from the wild beet to the sugar beet is demonstrated. The data suggest that the resistance genes were incorporated into the sugar beet chromosomes by non-allelic homologous recombination. The finding that the different resistance genes are allelic will have major implications on future attempts to breed sugar beet combining the different resistance genes.  相似文献   

20.
Beta corolliflora is a wild relative of sugar beet (Beta vulgaris) with 2n=4x=36 chromosomes. Monosomic addition lines (2n=19) of B. corolliflora in B. vulgaris were identified from backcross progenies between triploid hybrids (genome constitution VVC) and sugar beet. They were characterized by DNA-fingerprinting using nine different B. corolliflora-specific repetitive sequences as probes and by fluorescence in situ hybridization (FISH) using two B. corollifora specific sequences and two rDNA probes. Unique banding patterns obtained after genomic Southern hybridization enabled the classification of monosomic addition lines into 11 clusters, three of which proved to have a wild beet chromosome fragment in addition to the sugar beet chromosomes as revealed by FISH. Repetitive sequences pBC216 and pBC1416 were found to be present only on wild beet chromosomes IV and V. Chromosomes I and IV were found to carry genes for 18S and 5S rRNA, respectively. An idiogram of B. corolliflora was established in the triploid VVC hybrid on the basis of chromosome size and FISH. Eight B. corolliflora addition lines could be unequivocally identified by Southern hybridization and FISH, one addition line carrying the missing wild beet chromosome is probably not viable under greenhouse conditions. The monosomic addition lines will serve as a bridge for transferring genes from wild species to sugar beet and will help to uncover genetic relationships between species of the genus Beta.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号