首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Ciliate assemblages are often overlooked, but ubiquitous components of microbial biofilms which require a better understanding. Ciliate, diatom and bacterial colonisation were evaluated on two fouling-release (FR) coatings, viz. Intersleek 970 and Hempasil X3, and two biocidal antifouling (AF) coatings, viz. Intersmooth 360 and Interspeed 5640, in Port Phillip Bay, Australia. A total of 15 genera were identified during the 10 week deployment. Intersleek 970 displayed the most rapid fouling by ciliates, reaching 63.3(± 5.9) cells cm?2. After 10 weeks, all four coatings were extensively fouled. However, the toxicity of the AF coatings still significantly inhibited microbial fouling compared to the FR coatings. On all treatments, colonies of sessile peritrichs dominated the ciliate assemblage in the early stage of succession, but as the biofilm matured, vagile ciliates exerted more influence on the assemblage structure. The AF coatings showed selective toxic effects, causing significant differences in the ciliate species assemblages among the treatments.  相似文献   

2.
Long-term grooming tests were conducted on two large-scale test panels, one coated with a fluorosilicone fouling-release (FR) coating, and one coated with a copper based ablative antifouling (AF) coating. Mechanical grooming was performed weekly or bi-weekly using a hand operated, electrically powered, rotating brush tool. The results indicate that weekly grooming was effective at removing loose or heavy biofilm settlement from both coatings, but could not prevent the permanent establishment of low-profile tenacious biofilms. Weekly grooming was very effective at preventing macrofouling establishment on the AF coating. The effectiveness of weekly grooming at preventing macrofouling establishment on the FR coating varied seasonally. The results suggest that frequent mechanical grooming is a viable method to reduce the fouling rating of ships’ hulls with minimal impact to the coating. Frequent grooming could offer significant fuel savings while reducing hull cleaning frequencies and dry dock maintenance requirements.  相似文献   

3.
Diatoms are an important component of marine biofilms found on ship hulls. However, there are only a few published studies that describe the presence and abundance of diatoms on ships, and none that relate to modern ship hull coatings. This study investigated the diatom community structure on two in-service cruise ships with the same cruise cycles, one coated with an antifouling (AF) system (copper self-polishing copolymer) and the other coated with a silicone fouling-release (FR) system. Biofilm samples were collected during dry docking from representative areas of the ship and these provided information on the horizontal and vertical zonation of the hull, and intact and damaged coating and niche areas. Diatoms from the genera Achnanthes, Amphora and Navicula were the most common, regardless of horizontal ship zonation and coating type. Other genera were abundant, but their presence was more dependent on the ship zonation and coating type. Samples collected from damaged areas of the hull coating had a similar community composition to undamaged areas, but with higher diatom abundance. Diatom fouling on the niche areas differed from that of the surrounding ship hull and paralleled previous studies that investigated differences in diatom community structure on static and dynamically exposed coatings; niche areas were similar to static immersion and the hull to dynamic immersion. Additionally, diatom richness was greater on the ship with the FR coating, including the identification of several new genera to the biofouling literature, viz. Lampriscus and Thalassiophysa. These results are the first to describe diatom community composition on in-service ship hulls coated with a FR system. This class of coatings appears to have a larger diatom community compared to copper-based AF systems, with new diatom genera that have the ability to stick to ship hulls and withstand hydrodynamic forces, thus creating the potential for new problematic species in the biofilm.  相似文献   

4.
A mechanical grooming test was performed on large scale steel test panels coated with a fouling-release (FR) coating (International Intersleek 900), at four different frequencies, during the high fouling season in Port Canaveral, Florida. Grooming at frequencies of three or two times per week was effective at removing heavy biofilm growth and significantly reduced macrofouling settlement. Mechanical grooming at lower frequencies of weekly or bi-weekly removed heavy biofilm growth but was much less effective at reducing macrofouling settlement. The results indicated that frequent mechanical grooming could reduce the fouling rating of ships coated with FR coatings. The reduction in the fouling rating of ships’ hulls by frequent grooming could offer significant reductions in drag, fuel consumption, and the emission of exhaust gases. Frequent grooming could also eliminate the need for hull cleaning and increase the time between dry docking which would reduce the operational costs for many vessel operators.  相似文献   

5.
Copper based paints are used to prevent fouling on the hulls of ships. The widely documented effect of copper on hull assemblages may be primarily due to direct effects on the invertebrates themselves or indirect effects from copper absorbed into the microbial biofilm before settlement has commenced. Artificial units of habitat were exposed to varied regimes of copper to examine (1) the photosynthetic efficiency and pigments of early-colonising biofilms, and (2) subsequent macroinvertebrate assemblage change in response to the different regimes of copper. Macroinvertebrate assemblages were found to be less sensitive to the direct effects of copper than indirect effects as delivered through biofilms that have been historically exposed to copper, with some species more tolerant than others. This raises further concern for the efficacy of copper as a universal antifoulant on the hulls of ships, which may continue to assist the invasion of copper-tolerant invertebrate species.  相似文献   

6.
Biofilm organisms such as diatoms are potential regulators of global macrofouling dispersal because they ubiquitously colonize submerged surfaces, resist antifouling efforts and frequently alter larval recruitment. Although ships continually deliver biofilms to foreign ports, it is unclear how transport shapes biofilm microbial structure and subsequent macrofouling colonization. This study demonstrates that different ship hull coatings and transport methods change diatom assemblage composition in transported coastal marine biofilms. Assemblages carried on the hull experienced significant cell losses and changes in composition through hydrodynamic stress, whereas those that underwent sheltered transport, even through freshwater, were largely unaltered. Coatings and their associated biofilms shaped distinct macrofouling communities and affected recruitment for one third of all species, while biofilms from different transport treatments had little effect on macrofouling colonization. These results demonstrate that transport conditions can shape diatom assemblages in biofilms carried by ships, but the properties of the underlying coatings are mainly responsible for subsequent macrofouling. The methods by which organisms colonize and are transferred by ships have implications for their distribution, establishment and invasion success.  相似文献   

7.
Skin-friction results are presented for fouling-release (FR) hull coatings in the unexposed, clean condition and after dynamic exposure to diatomaceous biofilms for 3 and 6 months. The experiments were conducted in a fully developed turbulent channel flow facility spanning a wide Reynolds number range. The results show that the clean FR coatings tested were hydraulically smooth over much of the Reynolds number range. Biofilms, however, resulted in an increase in skin-friction of up to 70%. The roughness functions for the biofilm-covered surfaces did not display universal behavior, but instead varied with the percentage coverage by the biofilm. The effect of the biofilm was observed to scale with its mean thickness and the square root of the percentage coverage. A new effective roughness length scale (keff) for biofilms based on these parameters is proposed. Boundary layer similarity-law scaling is used to predict the impact of these biofilms on the required shaft power for a mid-sized naval surface combatant at cruising speed. The increase in power is estimated to be between 1.5% and 10.1% depending on the biofilm thickness and percentage coverage.  相似文献   

8.
In this study, the mechanical properties of biofilms formed at the surface of nano-filtration (NF) membranes from a drinking water plant were analysed. Confocal laser scanning microscopy observations revealed that the NF biofilms formed a dense and heterogeneous structure at the membrane surface, with a mean thickness of 32.5 ± 17.7 μm. The biofilms were scraped from the membrane surface and analysed in rotation and oscillation experiments with a RheoStress 150 rotating disk rheometer. During rotation analyses, a viscosity decrease with speed of shearing characteristic of rheofluidification was observed (η = 300 Pa s for ý = 0.3 s?1). In the oscillation analyses with a sweeping of frequency (1–100 Hz), elasticity (G′) ranged from 3000 to 3500 Pa and viscosity (G″) from 800 to 1200 Pa. Creep curves obtained with an application of a shear stress of 30 Pa were viscoelastic in nature. The G 0 and η values were, respectively, 1.4 ± 0.3 × 103 Pa and 3.3 ± 0.65 × 106 Pa s. The relationship between the characteristics of NF biofilms and the flow conditions encountered during NF is discussed.  相似文献   

9.
Grooming is a proactive method to keep a ship’s hull free of fouling. This approach uses a frequent and gentle wiping of the hull surface to prevent the recruitment of fouling organisms. A study was designed to compare the community composition and the drag associated with biofilms formed on a groomed and ungroomed fouling release coating. The groomed biofilms were dominated by members of the Gammaproteobacteria and Alphaproteobacteria as well the diatoms Navicula, Gomphonemopsis, Cocconeis, and Amphora. Ungroomed biofilms were characterized by Phyllobacteriaceae, Xenococcaceae, Rhodobacteraceae, and the pennate diatoms Cyclophora, Cocconeis, and Amphora. The drag forces associated with a groomed biofilm (0.75 ± 0.09 N) were significantly less than the ungroomed biofilm (1.09 ± 0.06 N). Knowledge gained from this study has helped the design of additional testing which will improve grooming tool design, minimizing the growth of biofilms and thus lowering the frictional drag forces associated with groomed surfaces.  相似文献   

10.
Surface wettability and microtopography can either enhance or deter larval settlement of many sessile marine organisms. This study quantifies the effect of these surface properties on the settlement of pediveligers of Mytilus galloprovincialis, using polymers spanning a range of wettability and microtextured polydimethylsiloxane (PDMS). Furthermore, the adhesion strength of settled pediveligers on microtextured PDMS surfaces was quantified using a flow chamber. Settlement was enhanced at the hydrophilic end of the wettability spectrum, where mean settlement on nylon reached 33.5 ± 13.1%. In contrast, mean settlement on the most hydrophobic polymer (PDMS) was 4.2 ± 3.2%. Microtopography had a much stronger effect compared to wettability, where 400 μm textured PDMS enhanced settlement above 90%. Settlement preferences were also positively correlated to adhesion strength at flow rates of 4 knots, with all initially settled pediveligers on smooth PDMS detaching, while 79.9 ± 5.7% of pediveligers remained on the 400 μm texture.  相似文献   

11.
Many strategies have been developed to improve the fouling release (FR) performance of silicone coatings. However, biofilms inevitably build on these surfaces over time. Previous studies have shown that intentional deformation of silicone elastomers can be employed to detach biofouling species. In this study, inspired by the methods used in soft-robotic systems, controlled deformation of silicone elastomers via pneumatic actuation was employed to detach adherent biofilms. Using programmed surface deformation, it was possible to release > 90% of biofilm from surfaces in both laboratory and field environments. A higher substratum strain was required to remove biofilms accumulated in the field environment as compared with laboratory-grown biofilms. Further, the study indicated that substratum modulus influences the strain needed to de-bond biofilms. Surface deformation-based approaches have potential for use in the management of biofouling in a number of technological areas, including in niche applications where pneumatic actuation of surface deformation is feasible.  相似文献   

12.
The objective of this research was to compare values for digestible energy (DE) and metabolisable energy (ME) and apparent total tract digestibility (ATTD) of nutrients in 11 diets fed to both growing pigs and gestating sows. Three diets were based on corn, wheat or sorghum and eight diets were based on a combination of corn and soybean meal, canola meal, conventional distillers’ dried grains with solubles, low-fat distillers’ dried grains with solubles, corn germ meal, corn bran, wheat middlings or soybean hulls. A total of 88 gestating sows (252 ± 24.2 kg BW; parity two to six) and 88 growing barrows (40 ± 4.7 kg BW) were used and randomly allotted to the 11 diets with eight replicate sows or pigs per diet. Faecal and urine samples were collected for 4 d following a 19 d adaptation period. The DE, ME and ATTD of gross energy (GE), acid detergent fibre (ADF), neutral detergent fibre (NDF) and crude protein (CP) in the 11 diets were calculated. Gestating sows had greater (p < 0.05) ATTD of GE and CP and DE values for all diets compared with growing pigs. Gestating sows also had greater (p < 0.05) ME values than growing pigs for the three grain diets and the diets containing wheat middlings and soybean hulls. No differences were observed in ATTD of ADF and NDF between gestating sows and growing pigs for any of the diets, except that gestating sows had greater (p < 0.05) ATTD of NDF than growing pigs when they were fed the four protein diets. The ATTD of GE and CP and DE values in gestating sows may be predicted by using equations generated from the values of ATTD of GE and CP and DE values obtained in growing pigs. Results of this research indicate that ATTD values of CP and GE obtained in gestating sows are greater than the values obtained in growing pigs, but values for ATTD of ADF obtained in growing pigs are not different from values in gestating sows.  相似文献   

13.
Currently, models for studying Legionella pneumophila biofilm formation rely on multi-species biofilms with low reproducibility or on growth in rich medium, where planktonic growth is unavoidable. The present study describes a new medium adapted to the growth of L. pneumophila monospecies biofilms in vitro. A microplate model was used to test several media. After incubation for 6 days in a specific biofilm broth not supporting planktonic growth, biofilms consisted of 5.36 ± 0.40 log (cfu cm?2) or 5.34 ± 0.33 log (gu cm?2). The adhered population remained stable for up to 3 weeks after initial inoculation. In situ confocal microscope observations revealed a typical biofilm structure, comprising cell clusters ranging up to ~300 μm in height. This model is adapted to growing monospecies L. pneumophila biofilms that are structurally different from biofilms formed in a rich medium. High reproducibility and the absence of other microbial species make this model useful for studying genes involved in biofilm formation.  相似文献   

14.
A laminar flow biofilm-monitoring system was used to determine the efficacies of three antifouling (AF) coatings and five fouling-release (FR) coatings againstVibrio harveyi attachment. On-line measurements of tryptophan fluorescence and bioluminescence from each coating, normalized to an upstream stainless steel coupon, were used to determine the effects of AF and FR surfaces on biofilm formation. The AF coatings consisted of 5, 10, and 35 wt% Sea Nine 211 (C9211) incorporated into a vinyl copolymer. Both the 10 and 35 wt% coatings significantly inhibited biofilm biomass development measured by tryptophan fluorescence compared to the stainless steel control.V. harveyi bioluminescence was significantly greater than tryptophan fluorescence in cells attached to these coatings, suggesting that bioluminescence expression may be a marker for cellular stress or toxicity in biofilms. Five different polydimethylsiloxane (PDMS) FR coatings did not inhibit biofilm formation under low flow conditions. However, four PDMS coatings demonstrated decreased biomass levels compared to stainless steel after exposure to a shear stress of 330 dynes cm–2. There was no toxic additive in these coatings; bioluminescence and tryptophan fluorescence were proportional.  相似文献   

15.
The aim of the present experiment was to investigate an experimental brown midrib (Bm) maize hybrid in comparison with a control (Con) non-Bm maize hybrid on ruminal and total tract digestibility, ruminal fermentation, ruminal ingesta kinetics, nitrogen (N) utilisation and microbial efficiency. A total of six ruminally and duodenally cannulated German Holstein cows were used. Animals were fed diets of either 11.5 kg dry matter (DM) of a Con or a Bm maize silage plus 4.1 kg DM of concentrate. Ruminal and total tract digestibility of organic matter, neutral detergent fibre and acid detergent fibre did not differ between hybrids. Short-chain fatty acid concentrations and pH in the rumen were not affected, but ruminal mean retention time was lower for Diet Bm (Con: 45.4 ± 2.39 h; Bm: 40.6 ± 2.39 h; least squares means ± standard error). Cows fed Diet Bm had greater efficiency of N utilisation (Con: 30.1 ± 1.37%; Bm: 33.1 ± 1.37%) and increased flow of microbial crude protein at the duodenum (MCPF) (Con: 7.0 ± 0.37 g/MJ metabolisable energy (ME); Bm: 8.1 ± 0.37 g/MJ ME). Thus, MCPF and utilisable crude protein at the duodenum (uCP) were greater for Diet Bm (MCPF – Con: 1117 ± 52.1 g/d; Bm: 1306 ± 52.1 g/d; uCP – Con: 1594 ± 57.9 g/d; Bm: 1807 ± 57.9 g/d) and ruminal N balance was lower for Diet Bm (Con: 98.7 ± 8.92 g/d; Bm: 65.6 ± 8.92 g/d). The present results show that the Bm maize hybrid might be advantageous for dairy cow nutrition with regard to N utilisation and MCPF. However, further research is necessary to draw more precise conclusions on the potential of Bm maize hybrids in general.  相似文献   

16.
Biofilms by the hyperhalophilic archaea Halorubrum sp. and Halobacterium sp. were analyzed, and for the first time the progression of structural features and the developmental parameters of these sessile populations are described. Optical slicing and digital analysis of sequential micrographs showed that their three dimensional structure was microorganism dependent. Biofilms of Halobacterium sp. developed in clusters that covered about 30% of the supporting surface at the interface level and expanded over about 86?±?4 μm in thickness, while Halorubrum sp. biofilms covered less than 20% of the surface and reached a thickness of 41?±?1 μm. The kinetics of growth was lower in biofilms, with generation times of 27?±?1 and 36?±?2 h for Halobacterium sp. and Halorubrum sp., respectively, as compared to 8.4?±?0.3 and 14?±?1 h in planktonic cultures. Differences between microorganisms were also observed at the cell morphology level. The interaction between the two microorganisms was also evaluated, showing that Halobacterium sp. can outcompete already established Halorubrum sp. biofilms by a mechanism that might include the combined action of tunnelling swimmers and antimicrobial compounds.  相似文献   

17.
The enteric bacterium and potential human pathogen, Escherichia coli, is known to persist in tropical soils and coastal waters. Vibrio cholerae causes the disease cholera and inhabits marine environments including microbial films on submerged surfaces. The abundances of E. coli and V. cholerae were quantified in biofilm and water-column samples from three harbors in Honolulu, Hawai‘i, which differ in their local and international ship traffic. E. coli and, in some cases V. cholerae, occurred in relatively high abundances in marine biofilms formed on abiotic surfaces, including the exterior hulls of ships. The community fingerprints of the biofilms and the water harboring these pathogens were further analyzed. The community compositions of biofilms from different locations were more similar to each other than to water-column communities from the same locations. These results suggest that biofilms are an overlooked reservoir and a source of dissemination for E. coli and V. cholerae.  相似文献   

18.
A series of polysulfone and polyacrylate-based zwitterionic coatings were prepared on epoxy-primed aluminum substrata and characterized for their antifouling (AF) and fouling-release (FR) properties towards marine bacteria, microalgae and barnacles. The zwitterionic polymer coatings provided minimal resistance against bacterial biofilm retention and microalgal cell attachment, but facilitated good removal of attached microbial biomass by exposure to water-jet apparatus generated hydrodynamic shearing forces. Increasing the ion content of the coatings improved the AF properties, but required a stronger adhesive bond to the epoxy-primed aluminum substratum to prevent coating swelling and dissolution. Grafted poly(sulfobetaine) (gpSBMA), the most promising zwitterionic coating identified from microfouling evaluations, enabled the removal of four out of five barnacles reattached to its surface without incurring damage to their baseplates. This significant result indicated that gpSBMA relied predominately on its surface chemistry for its FR properties since it was very thin (~1–2 µm) relative to commercial coating standards (>200 µm).  相似文献   

19.
Phototrophic biofilms are used in a variety of biotechnological and industrial processes. Understanding their structure, ie microbial composition, is a necessary step for understanding their function and, ultimately, for the success of their application. DNA analysis methods can be used to obtain information on the taxonomic composition and relative abundance of the biofilm members. The potential bias introduced by DNA extraction methods in the study of the diversity of a complex phototrophic sulfide-oxidizing biofilm was examined. The efficiency of eight different DNA extraction methods combining physical, mechanical and chemical procedures was assessed. Methods were compared in terms of extraction efficiency, measured by DNA quantification, and detectable diversity (16S rRNA genes recovered), evaluated by denaturing gradient gel electrophoresis (DGGE). Significant differences were found in DNA yields ranging from 116 ± 12 to 1893 ± 96 ng of DNA. The different DGGE fingerprints ranged from 7 to 12 bands. Methods including phenol–chloroform extraction after enzymatic lysis resulted in the greatest DNA yields and detectable diversity. Additionally, two methods showing similar yields and retrieved diversity were compared by cloning and sequencing. Clones belonging to members of the Alpha-, Beta- and Gamma- proteobacteria, Bacteroidetes, Cyanobacteria and to the Firmicutes were recovered from both libraries. However, when bead-beating was applied, clones belonging to the Deltaproteobacteria were also recovered, as well as plastid signatures. Phenol–chloroform extraction after bead-beating and enzymatic lysis was therefore considered to be the most suitable method for DNA extraction from such highly diverse phototrophic biofilms.  相似文献   

20.
Marine ecosystems are affected by introduced species including microalgae. We propose that biofouling on ships’ hulls is a potentially important mechanism for microalgae dispersal worldwide. Biofouling samples, for phytoplankton composition analysis, were collected in Spanish Mediterranean ports from the hulls of ships that had completed oceanic journeys from other Mediterranean ports, and long journeys from the Atlantic and Indian Oceans. Samples representing the local population of phytoplankton either in the water column or attached to the biofouling of locally-based ship-hulls were used as controls. A broad variety of microalgae species (including toxic dinoflagellates), which were not present in the local phytoplankton populations were found on the biofouling film of the ships that had been on distant journeys. In spite of the presence of the antifouling paints containing toxic compounds, microalgae were able to rapidly adapt to these non-favourable conditions. Consequently, our study shows that ships’ biofouling seems to be a powerful vector for microalgae dispersal at a global scale due to the capacity of microalgae to attach to the biofouling film and to cope by adaptation mechanisms with antifouling compounds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号