首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Computation of muscle force patterns that produce specified movements of muscle-actuated dynamic models is an important and challenging problem. This problem is an undetermined one, and then a proper optimization is required to calculate muscle forces. The purpose of this paper is to develop a general model for calculating all muscle activation and force patterns in an arbitrary human body movement. For this aim, the equations of a multibody system forward dynamics, which is considered for skeletal system of the human body model, is derived using Lagrange–Euler formulation. Next, muscle contraction dynamics is added to this model and forward dynamics of an arbitrary musculoskeletal system is obtained. For optimization purpose, the obtained model is used in computed muscle control algorithm, and a closed-loop system for tracking desired motions is derived. Finally, a popular sport exercise, biceps curl, is simulated by using this algorithm and the validity of the obtained results is evaluated via EMG signals.  相似文献   

2.
The use of a biomechanical model for human grasp modelling is presented. A previously validated biomechanical model of the hand has been used. The equilibrium of the grasped object was added to the model through the consideration of a soft contact model. A grasping posture generation algorithm was also incorporated into the model. All the geometry was represented using a spherical extension of polytopes (s-topes) for efficient collision detection. The model was used to simulate an experiment in which a subject was asked to grasp two cylinders of different diameters and weights. Different objective functions were checked to solve the indeterminate problem. The normal finger forces estimated by the model were compared to those experimentally measured. The popular objective function sum of the squared muscle stresses was shown not suitable for the grasping simulation, requiring at least being complemented by task-dependent grasp quality measures.  相似文献   

3.
During a vertical drop jump (VDJ), the human neuromuscular system absorbs and reuses external loads applied to the lower extremity by coordinating the musculoskeletal system. This study aims to investigate the influence of the eccentric strength of the knee extensor muscles on the biomechanical factors of a VDJ. Participants were divided into two groups based on the eccentric strength of their knee extension muscles: low eccentric (LECC) and high eccentric (HECC) strength groups. The VDJ joint kinematics and kinetics of the lower extremity, the fascicle behavior of the vastus lateralis, and the muscle activation of the knee extensor muscles were simultaneously recorded during maximum-effort VDJ. Compared with the LECC group, the HECC group showed a higher jump, greater knee and ankle joint stiffness, and smaller fascicle length change. These findings suggest that the eccentric strength capacity of the knee extensor muscles accounts for the different biomechanical strategies (bouncing-type for HECC and absorbing-type for LECC) observed between the groups. Consequently, the eccentric strength of the knee extensor muscle may be an essential factor in determining the biomechanical strategy for VDJ and should be considered in the jumping performance enhancement training paradigm.  相似文献   

4.
This study establishes a procedure to couple Decision Support System for Agrotechnology Transfer (DSSAT) and China Agroecological Zone model (AEZ-China). This procedure enables us to quantify the effects of two natural adaptation measures on soybean production in China, concern on which has been growing owing to the rapidly rising demand for soybean and the foreseen global climate change. The parameters calibration and mode verification are based on the observation records of soybean growth at 13 agro-meteorological observation stations in Northeast China and Huang-Huai-Hai Plain over 1981–2011. The calibration of eco-physiological parameters is based on the algorithms of DSSAT that simulate the dynamic bio-physiological processes of crop growth in daily time-step. The effects of shifts in planting day and changes in the length of growth cycle (LGC) are evaluated by the speedy algorithms of AEZ. Results indicate that without adaptation, climate change from the baseline 1961–1990 to the climate of 2050s as specified in the Providing Regional Climate for Impacts Studies-A1B would decrease the potential yield of soybean. By contrast, simulations of DSSAT using AEZ-recommended cultivars with adaptive LGC and also the corresponding adaptive planting dates show that the risk of yield loss could be fully or partially mitigated across majority of grid cells in the major soybean-growing areas.  相似文献   

5.
Vascular stiffness is a major cause of cardiovascular disease during normal aging and in Hutchinson–Gilford progeria syndrome (HGPS), a rare genetic disorder caused by ubiquitous progerin expression. This mutant form of lamin A causes premature aging associated with cardiovascular alterations that lead to death at an average age of 14.6 years. We investigated the mechanisms underlying vessel stiffness in LmnaG609G/G609G mice with ubiquitous progerin expression, and tested the effect of treatment with nitrites. We also bred LmnaLCS/LCSTie2Cre+/tgand LmnaLCS/LCSSM22αCre+/tg mice, which express progerin specifically in endothelial cells (ECs) and in vascular smooth muscle cells (VSMCs), respectively, to determine the specific contribution of each cell type to vascular pathology. We found vessel stiffness and inward remodeling in arteries of LmnaG609G/G609G and LmnaLCS/LCSSM22αCre+/tg, but not in those from LmnaLCS/LCSTie2Cre+/tgmice. Structural alterations in aortas of progeroid mice were associated with decreased smooth muscle tissue content, increased collagen deposition, and decreased transverse waving of elastin layers in the media. Functional studies identified collagen (unlike elastin and the cytoskeleton) as an underlying cause of aortic stiffness in progeroid mice. Consistent with this, we found increased deposition of collagens III, IV, V, and XII in the media of progeroid aortas. Vessel stiffness and inward remodeling in progeroid mice were prevented by adding sodium nitrite in drinking water. In conclusion, LmnaG609G/G609G arteries exhibit stiffness and inward remodeling, mainly due to progerin‐induced damage to VSMCs, which causes increased deposition of medial collagen and a secondary alteration in elastin structure. Treatment with nitrites prevents vascular stiffness in progeria.  相似文献   

6.
7.
Subject-specific musculoskeletal models have become key tools in the clinical decision-making process. However, the sensitivity of the calculated solution to the unavoidable errors committed while deriving the model parameters from the available information is not fully understood. The aim of this study was to calculate the sensitivity of all the kinematics and kinetics variables to the inter-examiner uncertainty in the identification of the lower limb joint models. The study was based on the computer tomography of the entire lower-limb from a single donor and the motion capture from a body-matched volunteer. The hip, the knee and the ankle joint models were defined following the International Society of Biomechanics recommendations. Using a software interface, five expert anatomists identified on the donor's images the necessary bony locations five times with a three-day time interval. A detailed subject-specific musculoskeletal model was taken from an earlier study, and re-formulated to define the joint axes by inputting the necessary bony locations. Gait simulations were run using OpenSim within a Monte Carlo stochastic scheme, where the locations of the bony landmarks were varied randomly according to the estimated distributions. Trends for the joint angles, moments, and the muscle and joint forces did not substantially change after parameter perturbations. The highest variations were as follows: (a) 11° calculated for the hip rotation angle, (b) 1% BW × H calculated for the knee moment and (c) 0.33 BW calculated for the ankle plantarflexor muscles and the ankle joint forces. In conclusion, the identification of the joint axes from clinical images is a robust procedure for human movement modelling and simulation.  相似文献   

8.
Segmental bone defect animal models are often used for evaluating the bone regeneration performance of bone substituting biomaterials. Since bone regeneration is dependent on mechanical loading, it is important to determine mechanical load transfer after stabilization of the defect and to study the effects of biomaterial stiffness on the transmitted load. In this study, we assess the mechanical load transmitted over a 6 mm femur defect that is stabilized with an internal PEEK fixation plate. Subsequently, three types of selective laser melted porous titanium implants with different stiffness values were used to graft the defect (five specimens per group). In one additional group, the defect was left empty. Micro strain gauges were used to measure strain values at four different locations of the fixation plate during external loading on the femoral head. The load sharing between the fixation plate and titanium implant was highly variable with standard deviations of measured strain values between 31 and 93% of the mean values. As a consequence, no significant differences were measured between the forces transmitted through the titanium implants with different elastic moduli. Only some non-significant trends were observed in the mean strain values that, consistent with the results of a previous finite element study, implied the force transmitted through the implant increases with the implant stiffness. The applied internal fixation method does not standardize mechanical loading over the defect to enable detecting small differences in bone regeneration performances of bone substituting biomaterials. In conclusion, the fixation method requires further optimization to reduce the effects of the operative procedure and make the mechanical loading more consistent and improve the overall sensitivity of this rat femur defect model.  相似文献   

9.
Aim To investigate effects of within-season and interannual climate variability on the behaviour of boreal forest ecosystems as simulated by the FORSKA2 patch model. Location Eleven climate station locations distributed along a transect across the boreal zone of central Canada. Methods FORSKA2′s water balance submodel was modified to enable it to behave more realistically under a varying climate. Long-term actual monthly time-series of temperature and precipitation data were detrended and used to drive the modified model. Long-term monthly averages of the same detrended data were used to drive the unmodified model. Results Modifications created significant improvements when simulating species composition at sites in boreal Canada. Simulated forest biomass values were slightly higher than those obtained from the unmodified model using averaged climate records, but resembled the observed distribution of vegetation more closely. Main conclusions Modified FORSKA2 suggests that boreal forest composition and distribution may be more sensitive to changes in monthly rainfall data than to changes in temperature. Climate variability affects seasonal water balances and should be considered when using patch models to forecast vegetation dynamics during and following a period of climate transition. The modified model provided improved representation of the latitudinal trend in spatially averaged biomass density in this region.  相似文献   

10.
Improvised explosive devices (IEDs) were used extensively to target occupants of military vehicles during the conflicts in Iraq and Afghanistan (2003–2011). War fighters exposed to an IED attack were highly susceptible to lower limb injuries. To appropriately assess vehicle safety and make informed improvements to vehicle design, a novel Anthropomorphic Test Device (ATD), called the Warrior Injury Assessment Manikin (WIAMan), was designed for vertical loading. The main objective of this study was to develop and validate a Finite Element (FE) model of the WIAMan lower limb (WIAMan-LL). Appropriate materials and contacts were applied to realistically model the physical dummy. Validation of the model was conducted based on experiments performed on two different test rigs designed to simulate the vertical loading experienced during an under-vehicle explosion. Additionally, a preliminary evaluation of the WIAMan and Hybrid-III test devices was performed by comparing force responses to post-mortem human surrogate (PMHS) corridors. The knee axial force recorded by the WIAMan-LL when struck on the plantar surface of the foot (2 m/s) fell mostly within the PMHS corridor, but the corresponding data predicted by the Hybrid-III was almost 60% higher. Overall, good agreements were observed between the WIAMan-LL FE predictions and experiments at various pre-impact speeds ranging from 2 m/s up to 5.8 m/s. Results of the FE model were backed by mean objective rating scores of 0.67–0.76 which support its accuracy relative to the physical lower limb dummy. The observations and objective rating scores show the model is validated within the experimental loading conditions. These results indicate the model can be used in numerical studies related to possible dummy design improvements once additional PMHS data is available. The numerical lower limb is currently incorporated into a whole body model that will be used to evaluate the vehicle design for underbody blast protection.  相似文献   

11.
To investigate the biomechanical effect of collars, finite element analyses are carried out through two hip joints that are implanted using collared and collarless stems, respectively, and an intact hip joint model. For the analyses, the sacrum, coxal bone, and the cancellous and cortical bones of a femur are modelled using finite elements based on X-ray computed tomographic images taken from a 27-year-old woman. From the results, it is found that a collar with perfect calcar contact prevents stem subsidence and decreases the proximal–lateral gap and the lateral stem tilting. Therefore, it can impart reasonable biomechanical stability for total hip arthroplasty. However, its low load transmission ability and increased stem tilting effect due to the imperfect contact between the collar and the calcar are found to be serious problems that need to be solved. Results of clinical follow-up are presented for supporting the computational results.  相似文献   

12.
The aim of this paper is to create a model for mapping the surface electromyogram (EMG) signals to the force that generated by human arm muscles. Because the parameters of each person's muscle are individual, the model of the muscle must have two characteristics: (1) The model must be adjustable for each subject. (2) The relationship between the input and output of model must be affected by the force-length and the force-velocity behaviors are proven through Hill's experiments. Hill's model is a kinematic mechanistic model with three elements, i.e. one contractile component and two nonlinear spring elements.In this research, fuzzy systems are applied to improve the muscle model. The advantages of using fuzzy system are as follows: they are robust to noise, they prove an adjustable nonlinear mapping, and are able to model the uncertainties of the muscle.Three fuzzy coefficients have been added to the relationships of force-length (active and passive) and force-velocity existing in Hill's model. Then, a genetic algorithm (GA) has been used as a biological search method that can adjust the parameters of the model in order to achieve the optimal possible fit.Finally, the accuracy of the fuzzy genetic implementation Hill-based muscle model (FGIHM) is invested as following: the FGIHM results have 12.4% RMS error (in worse case) in comparison to the experimental data recorded from three healthy male subjects. Moreover, the FGIHM active force-length relationship which is the key characteristics of muscles has been compared to virtual muscle (VM) and Zajac muscle model. The sensitivity of the FGIHM has been evaluated by adding a white noise with zero mean to the input and FGIHM has proved to have lower sensitivity to input noise than the traditional Hill's muscle model.  相似文献   

13.
Medial opening wedge high tibial osteotomy (MOWHTO) is a surgical procedure intended to alter the coronal and sagittal plane alignment of the lower limb to primarily relieve the symptoms of osteoarthritis in the medial compartment of the knee. The purpose of this work was to develop and validate a finite element model to simulate the opening of a high tibial osteotomy and determine whether a pilot hole at the cortical hinge reduces the risk of lateral cortical fracture. Fifteen models were reconstructed from CT images of eight cadaveric specimens. The validated models indicated that the addition of the pilot hole increased the stresses and likelihood of a type-I and type-II fractures during the opening of a medial open wedge high tibial osteotomy compared to the no-hole condition.  相似文献   

14.
Representation of realistic muscle geometries is needed for systematic biomechanical simulation of musculoskeletal systems. Most of the previous musculoskeletal models are based on multibody dynamics simulation with muscles simplified as one-dimensional (1D) line-segments without accounting for the large muscle attachment areas, spatial fibre alignment within muscles and contact and wrapping between muscles and surrounding tissues. In previous musculoskeletal models with three-dimensional (3D) muscles, contractions of muscles were among the inputs rather than calculated, which hampers the predictive capability of these models. To address these issues, a finite element musculoskeletal model with the ability to predict contractions of 3D muscles was developed. Muscles with realistic 3D geometry, spatial muscle fibre alignment and muscle-muscle and muscle-bone interactions were accounted for. Active contractile stresses of the 3D muscles were determined through an efficient optimization approach based on the measured kinematics of the lower extremity and ground force during gait. This model also provided stresses and strains of muscles and contact mechanics of the muscle-muscle and muscle-bone interactions. The total contact force of the knee predicted by the model corresponded well to the in vivo measurement. Contact and wrapping between muscles and surrounding tissues were evident, demonstrating the need to consider 3D contact models of muscles. This modelling framework serves as the methodological basis for developing musculoskeletal modelling systems in finite element method incorporating 3D deformable contact models of muscles, joints, ligaments and bones.  相似文献   

15.
Achieving successful vascularization remains one of the main problems in bone tissue engineering. After scaffold implantation, the growth of capillaries into the porous construct may be too slow to provide adequate nutrients to the cells in the scaffold interior and this inhibits tissue formation in the scaffold core. Often, prior to implantation, a controlled cell culture environment is used to stimulate cell proliferation and, once in place, the mechanical environment acting on the tissue construct is determined by the loading conditions at the implantation site. To what extent do cell seeding conditions and the construct loading environment have an effect on scaffold vascularization and tissue growth? In this study, a mechano-biological model for tissue differentiation and blood vessel growth was used to determine the influence of cell seeding on vascular network development and tissue growth inside a regular-structured bone scaffold under different loading conditions. It is predicted that increasing the number of cells seeded homogeneously reduces the rate of vascularization and the maximum penetration of the vascular network, which in turn reduces bone tissue formation. The seeding of cells in the periphery of the scaffold was predicted to be beneficial for vascularization and therefore for bone growth; however, tissue formation occurred more slowly during the first weeks after implantation compared to homogeneous seeding. Low levels of mechanical loading stimulated bone formation while high levels of loading inhibited bone formation and capillary growth. This study demonstrates the feasibility of computational design approaches for bone tissue engineering.  相似文献   

16.
A biomechanical model of the female pelvic support system was developed to explore the contribution of pelvic floor muscle defect to the development of stress urinary incontinence (SUI). From a pool of 135 patients, clinical data of 26 patients with pelvic muscular defect were used in modelling. The model was employed to estimate the parameters that describe the stiffness properties of the vaginal wall and ligament tissues for individual patients. The parameters were then implemented into the model to evaluate for each patient the impact of pelvic muscular defect on the vaginal apex support and the bladder neck support, a factor that relates to the onset of SUI. For the modelling analysis, the compromise of pelvic muscular support was demonstrated to contribute to vaginal apex prolapse and bladder neck prolapse, a condition commonly seen in SUI patients, while simulated conditions of restored muscular support were shown to help re-establish both vaginal apex and bladder neck supports. The findings illustrate the significance of pelvic muscle strength to vaginal support and urinary continence; therefore, the clinical recommendation of pelvic muscle strengthening, such as Kegel exercises, has been shown to be an effective treatment for patients with SUI symptoms.  相似文献   

17.
Oral cancer surgery has a negative influence on the quality of life (QOL). As a result of the complex physiology involved in oral functions, estimation of surgical effects on functionality remains difficult. We present a user-friendly biomechanical simulation of tongue surgery, including closure with suturing and scar formation, followed by an automated adaptation of a finite element (FE) model to the shape of the tongue. Different configurations of our FE model were evaluated and compared to a well-established FE model. We showed that the post-operative impairment as predicted by our model was qualitatively comparable to a patient case for five different tongue maneuvers.  相似文献   

18.

Background and Aims

Epidemiological simulation models coupling plant growth with the dispersal and disease dynamics of an airborne plant pathogen were devised for a better understanding of host–pathogen dynamic interactions and of the capacity of grapevine development to modify the progress of powdery mildew epidemics.

Methods

The first model is a complex discrete mechanistic model (M-model) that explicitly incorporates the dynamics of host growth and the development and dispersion of the pathogen at the vine stock scale. The second model is a simpler ordinary differential equations (ODEs) compartmental SEIRT model (C-model) handling host growth (foliar surface) and the ontogenic resistance of the leaves. With the M-model various levels of vine development are simulated under three contrasting climatic scenarios and the relationship between host and disease variables are examined at key periods in the epidemic process. The ability of the C-model to retrieve the main dynamics of the disease for a range of vine growth given by the M-model is investigated.

Key Results

The M-model strengthens experimental results observed regarding the effect of the rate of leaf emergence and of the number of leaves at flowering on the severity of the disease. However, it also underlines strong variations of the dynamics of disease depending on the vigour and indirectly on the climatic scenarios. The C-model could be calibrated by using the M-model provided that different parameters before and after shoot topping and for various vigour levels and inoculation time are used. Biologically relevant estimations of the parameters that could be used for its extension to the vineyard scale are obtained.

Conclusions

The M-model is able to generate a wide range of growth scenarios with a strong impact on disease evolution. The C-model is a promising tool to be used at a larger scale.  相似文献   

19.
The human operator is modelled as a single-degree-of-freedom dynamic mechanical system for predicting the response to impulsive torque reaction forces produced by rotating spindle power hand tools such as nutrunners or screwdrivers. The model uses mass, spring and damping elements to represent the standing operator supporting the tool in the hand. It was hypothesized that these mechanical elements are affected by work location and vary among individuals. These elements were ascertained by measuring the resulting frequency and amplitude of a freely oscillating defined mechanical system when externally loaded using maximal effort to oppose its motion. Twenty-five subjects (13 female, 12 male) participated in the full factorial experiment that measured the effects of gender, vertical and horizontal work location for various tool shapes (in-line, pistol, right angle), and orientations (horizontal and vertical). The mean operator stiffness decreased from 1721 to 1195 N/m when the horizontal work location increased from 30 to 90 cm in front of the ankles for a pistol-grip handle used on a vertical surface. Males had greater mass moment of inertia of (0.0099 kg m2) than females (0.0072 kg m2) for an in-line handle used on a horizontal surface. Internal validation by independently measuring apparatus torque found that the model satisfactorily explained the measured operator dynamics with an average error of 2.86%. Group variance reflects the range of operator capacities to react against power hand tool generated forces for the sample group and therefore it may also be useful for understanding the range of capacities among a group of operators performing similar tasks.  相似文献   

20.
The effects of external resistance on the recruitment of trunk muscles in sagittal movements and the coactivation mechanism to maintain spinal stability were investigated using a simple computational model of iso-resistive spine sagittal movements. Neural excitation of muscles was attained based on inverse dynamics approach along with a stability-based optimisation. The trunk flexion and extension movements between 60° flexion and the upright posture against various resistance levels were simulated. Incorporation of the stability constraint in the optimisation algorithm required higher antagonistic activities for all resistance levels mostly close to the upright position. Extension movements showed higher coactivation with higher resistance, whereas flexion movements demonstrated lower coactivation indicating a greater stability demand in backward extension movements against higher resistance at the neighbourhood of the upright posture. Optimal extension profiles based on minimum jerk, work and power had distinct kinematics profiles which led to recruitment patterns with different timing and amplitude of activation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号