首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
An update is presented on liquid membrane-based processes as viable and relevant alternatives to conventional approaches such as precipitation, solvent extraction, ion exchange processes and electrochemical techniques for the removal and recovery of some toxic and/or valuable trace metal ions including some actinides and fission products e.g. U, Am, Y etc and As, Cd, Co, Cr, Cu, Hg, Ni, Pb, Zn etc from radioactive as well as non-radioactive aqueous waste solutions respectively. In particular, results of experiments aimed at developing supported liquid membrane(SLM)-based process using commercially available porous membranes and indigenously prepared track--etch membranes (TEMs) have been critically examined in laboratory studies to generate basic data needed to evaluate their utility for continuous operation without regeneration. These include effect of pore size, porosity, optimum pore size and their reusability. It is clearly demonstrated that indigenously prepared 10 microm thick TEMs with a porosity in the range of 2-5% give comparable transport rates for metal ions-matching with that of commercial membranes of much higher thickness (160 microm) and higher porosity of 60-85%. The smaller thickness of TEMs more than compensates for their lower porosity. It is shown that because of their well defined pore characteristics TEMs could serve as model supports in SLM studies. By comparing the values of permeability coefficient (P) for TEM and polytetraflouroethylene (PTFE) supports for the transport of Pb2+ chosen as a typical divalent metal ion, and using di-2 ethyl hexyl phosphoric acid (D2EHPA) as the carrier, it is unambiguously proved that diffusion of the metal complex across the membrane is the rate controlling step in metal ion transport in SLM-based processes. An overview of the experimental findings along with future outlook and suggestions for further work are presented in this paper.  相似文献   

2.
Pit membranes between xylem vessels have been suggested to have functional adaptive traits because of their influence on hydraulic resistance and vulnerability to embolism in plants. Observations of intervessel pit membranes in 26 hardwood species using electron microscopy showed significant variation in their structure, with a more than 25-fold difference in thickness (70-1892 nm) and observed maximum pore diameter (10-225 nm). In some SEM images, pit membrane porosity was affected by sample preparation, although pores were resolvable in intact pit membranes of many species. A significant relationship (r(2) = 0.7, P = 0.002) was found between pit membrane thickness and maximum pore diameter, indicating that the thinner membranes are usually more porous. In a subset of nine species, maximum pore diameter determined from SEM was correlated with pore diameter calculated from air-seeding thresholds (r(2) = 0.8, P < 0.001). Our data suggest that SEM images of intact pit membranes underestimate the porosity of pit membranes in situ. Pit membrane porosity based on SEM offers a relative estimate of air-seeding thresholds, but absolute pore diameters must be treated with caution. The implications of variation in pit membrane thickness and porosity to plant function are discussed.  相似文献   

3.
Glucose-sensitive hydrogel membranes have been synthesized and characterized for their rate-of-delivery of macromolecules. The mechanism for changing this rate is based on variable displacement of the affinity interaction between dextran and concanavalin A (con A). Our main objective was to characterize the diffusion of model proteins (insulin, lysozyme, and BSA) through the membrane, in response to changes in environmental glucose concentrations. Membranes were constructed from crosslinked dextrans to which con A was coupled via a spacer arm. Changes in the porosity of the resulting hydrogel in the presence of glucose led to changes in the diffusion rate observed for a range of proteins. Gels of specified thickness were cast around to nylon gauze support (pore size, 0.1 mm) to improve mechanical strength. Diffusion of proteins through the gel membrane was determined using a twin-chamber diffusion cell with the concentrations being continuously monitored using a UV-spectrophotometer. Changes in the transport properties of the membranes in response to glucose were explored and it was found that, while 0.1M D-glucose caused a substantial, but saturateable, increase in the rates of diffusion of both insulin and lysozyme, controls using glycerol or L-glucose (0.1M) had no significant effect. Sequential addition and removal of external glucose in a stepwise manner showed that permeability changes were reversible. As expected, diffusion rates were inversely proportional to membrane thickness. A maximum increase in permeability was observed at pH 7.4 and at 37 degrees C. The results demonstrate that this hydrogel membrane functions as a smart material allowing control of solute delivery in response to specific changes in its external environment.  相似文献   

4.
The main aim of this research is to numerically obtain the permeability coefficient in the cylindrical scaffolds. For this purpose, a mathematical analysis was performed to derive an equation for desired porosity in terms of morphological parameters. Then, the considered cylindrical geometries were modeled and the permeability coefficient was calculated according to the velocity and pressure drop values based on the Darcy’s law. In order to validate the accuracy of the present numerical solution, the obtained permeability coefficient was compared with the published experimental data. It was observed that this model can predict permeability with the utmost accuracy. Then, the effect of geometrical parameters including porosity, scaffold pore structure, unit cell size, and length of the scaffolds as well as entrance mass flow rate on the permeability of porous structures was studied. Furthermore, a parametric study with scaling laws analysis of sample length and mass flow rate effects on the permeability showed good fit to the obtained data. It can be concluded that the sensitivity of permeability is more noticeable at higher porosities. The present approach can be used to characterize and optimize the scaffold microstructure due to the necessity of cell growth and transferring considerations.  相似文献   

5.
Porous artificial bone substitutes, especially bone scaffolds coupled with osteobiologics, have been developed as an alternative to the traditional bone grafts. The bone scaffold should have a set of properties to provide mechanical support and simultaneously promote tissue regeneration. Among these properties, scaffold permeability is a determinant factor as it plays a major role in the ability for cells to penetrate the porous media and for nutrients to diffuse. Thus, the aim of this work is to characterize the permeability of the scaffold microstructure, using both computational and experimental methods. Computationally, permeability was estimated by homogenization methods applied to the problem of a fluid flow through a porous media. These homogenized permeability properties are compared with those obtained experimentally. For this purpose a simple experimental setup was used to test scaffolds built using Solid Free Form techniques. The obtained results show a linear correlation between the computational and the experimental permeability. Also, this study showed that permeability encompasses the influence of both porosity and pore size on mass transport, thus indicating its importance as a design parameter. This work indicates that the mathematical approach used to determine permeability may be useful as a scaffold design tool.  相似文献   

6.
Underground rocks usually have complex pore system with a variety of pore types and a wide range of pore size. The effects of pore structure on elastic wave attenuation cannot be neglected. We investigated the pore structure effects on P-wave scattering attenuation in dry rocks by pore-scale modeling based on the wave theory and the similarity principle. Our modeling results indicate that pore size, pore shape (such as aspect ratio), and pore density are important factors influencing P-wave scattering attenuation in porous rocks, and can explain the variation of scattering attenuation at the same porosity. From the perspective of scattering attenuation, porous rocks can safely suit to the long wavelength assumption when the ratio of wavelength to pore size is larger than 15. Under the long wavelength condition, the scattering attenuation coefficient increases as a power function as the pore density increases, and it increases exponentially with the increase in aspect ratio. For a certain porosity, rocks with smaller aspect ratio and/or larger pore size have stronger scattering attenuation. When the pore aspect ratio is larger than 0.5, the variation of scattering attenuation at the same porosity is dominantly caused by pore size and almost independent of the pore aspect ratio. These results lay a foundation for pore structure inversion from elastic wave responses in porous rocks.  相似文献   

7.
The effects of bovine serum albumin adsorption on the transport characteristics of asymmetric poly(ether sulfone) ultrafiltration membranes were determined using polydisperse dextrans with gel permeation chromatography. Actual dextran sieving coefficients were evaluated from observed sieving data for both the clean and preadsorbed membranes using a stagnant film model. The flux dependence of the actual dextran sieving coefficients was used to evaluate the intrinsic membrane hindrance factors for convective (i.e., sieving) and diffusive transport for the different molecular weight dextrans using classical membrane transport theory. Protein adsorption caused a reduction in both dextran sieving and diffusion, with the magnitude of the reduction a function of the dextran molecular weight and pore size. The effects of adsorption on the specific pore area and the membrane porosity were then determined using a recent model for solute transport through asymmetric ultrafiltration membranes. The data indicate that protein adsorption occurs preferentially in the larger membrane pores, causing a greater reduction in solute sieving compared to the membrane hydraulic permeability and porosity than would be predicted on the basis of either a simple pore blockage or pore constriction model.  相似文献   

8.
Biomaterials used in some biomedical devices are porous and exposed to normal and tangential flow of biofluids. To examine the influence of flow induced forces on the morphology and the biochemical responses of cells adhering to such biomaterials, a Hele-Shaw cell with a porous bottom wall was designed and characterized experimentally. Theoretical predictions for the flow in the chamber are provided and allow to quantify the shear stress and/or transmural pressure exerted on cells. It is thus possible to follow up continuously the shape changes of cells that are adherent on a permeable membrane used in bioreactors.  相似文献   

9.
This paper reviews our current activities of developing polyether urethane urea membranes for hemodialysis application. It is observed that the processing parameters such as precipitation medium, precipitation temperature etc. can influence the porosity of the membrane and subsequently the permeability property. Polyurethane/poly(methyl methacrylate) blended membranes have also shown high permeability. All the membranes are subjected to different sterilization processes and the pore sizes before and after sterilization are determined. The changes in the pore size due to sterilization seems to effect the permeability.  相似文献   

10.
An outer ultra-thin-polydimethyldichlorosiloxane film composite membrane has been used as the outer covering barrier in an amperometric glucose oxidase enzyme electrode biosensor. The composite membrane was formed via the condensation polymerisation of dimethyldichlorosilane at the surface of a host porous alumina membrane. Homogeneous polydimethyldichlorosiloxane films of <100 nm thickness acted as effective substrate diffusional barriers and were supported by the underlying porous alumina surface. Glucose and oxygen permeability coefficients were determined using diffusion chamber apparatus. Polysiloxane composite membranes were found to offer some screening functionality towards anionic biological interferents such as ascorbate. On exposure to blood an approximate 25% signal drift was observed during the first 2 h exposure to blood; after this time responses remained almost stable. Whole blood glucose determinations showed a close correlation (r(2)=0.98) to analyses performed via standard hospital analyses.  相似文献   

11.
In Britain since the late 1940s, the Sparrowhawk ( Accipiter nisus ) and Peregrine (Falco peregrinus) have laid eggs with unusually thin shells. DDT and its metabolites have been blamed. This paper reports how various properties of modern shells differ from those of older shells of normal thickness.
For the shells of both species, there were roughly proportional reductions in thickness of the two main component layers, the mammillary and palisade layers, suggesting that thin shells resulted from a decreased rate of deposition. In addition, in modern Sparrowhawk shells, the resistant surface layer was especially deficient perhaps due to a further reduction in deposition rate or to slight premature termination. Shell thinning was associated with a proportionately greater decrease in shell strength. For the Peregrine, porosity, measured as the rate of passage of water vapour, was lower for the thin shells than for normal shells. This difference could not be explained by a change in the area of the pore channels, since the modern shells did not have fewer pores and the pore channels were the same size and shape in the two samples of shells. However, in the thin shells of both species, mammillae height increased relative to mammillary layer thickness, and in the Peregrine shells the extent of this increase was related to the change in porosity.  相似文献   

12.
To study the flow of shaped particles in porous media, elution of spherical and rod-like micro-organisms was performed through beds of spherical glass beads. A 0.04 cm/s constant flow rate was used with 5 microm yeast suspensions, 1 microm latex micro-spheres and rod-like bacilli Lactobacillus bulgaricus 6 microm long and 0.5 microm in diameter. Yeast cells' diameter is close to the bacilli length and micro-spheres have the same diameter as bacilli. All particle types have similar density. To make the different packing beds, 1.125 mm coarse beads and 0.1115 mm fine beads were used. Experiments were carried out using a column loaded with the binary packing (volume fraction of coarse particles in the mixture 0.7) or a monosize packing with the same amount of coarse or fine particles as used in the binary packing. Analysis of experimental results was based on two models: pure exclusion effect and hydrodynamic separation model [hydrodynamic chromatography (HDC)]. Results for spheres show that the classic HDC model fits to the experimental data whenever the ratio of particle size to the pathway bend scale is high ( approximately 1/100, micro-spheres). However, if this ratio increases and becomes approximately 1/20, the HDC model needs to be corrected due to the effect of channel wall curvature on exclusion. This led to a modified HDC equation of the form R=B/(1+2lambda-2.8lambda(2)), where R is the retention, lambda is the aspect ratio and constant B>or=1. Bacillus separation follows an exclusion mechanism, since pore topology is important in the separation of shaped particles when the aspect ratio approaches lambda=0.1. In the case of a binary packing bed, rod-like particles display a different behaviour than the one exhibited by the spherical particles of the same scale as bacilli, either in length or in diameter. This may be explained by the interaction between rod-like bacilli and the bed's pore topology. A generalised exclusion model for particles was proposed to be R=A/(1-lambda)(z), where A is the coefficient proportional to the tortuosity and the parameter z=1, 2 or 3 depends mainly on pore shape. Controlled pore topology opens interesting applications for bio-separation (in porous micro-fluidic devices, deep bed filtration) and might be especially important for macromolecules and micro-organisms separation with different shapes.  相似文献   

13.
The development of strategies to measure plasma membrane osmotic water permeability (Pf) in epithelial cells has been motivated by the identification of a family of molecular water channels. A general approach utilizing interferometry to measure cell shape and volume was developed and applied to measure Pf in cell layers. The method is based on the cell volume dependence of optical path length (OPL) for a light beam passing through the cell. The small changes in OPL were measured by interferometry. A mathematical model was developed to relate the interference signal to cell volume changes for cells of arbitrary shape and size. To validate the model, a Mach-Zehnder interference microscope was used to image OPL in an Madin Darby Canine Kidney (MDCK) cell layer and to reconstruct the three-dimensional cell shape (OPL resolution < lambda/25). As predicted by the model, a doubling of cell volume resulted in a change in OPL that was proportional to the difference in refractive indices between water and the extracellular medium. The time course of relative cell volume in response to an osmotic gradient was computed from serial interference images. To measure cell volume without microscopy and image analysis, a Mach-Zehnder interferometer was constructed in which one of two interfering laser beams passed through a flow chamber containing the cell layer. The interference signal in response to an osmotic gradient was analyzed to quantify the time course of relative cell volume. The calculated MDCK cell plasma membrane Pf of 6.1 x 10(-4) cm/s at 24 degrees C agreed with that obtained by interference microscopy and by a total internal reflection fluorescence method. Interferometry was also applied to measure the apical plasma membrane water permeability of intact toad urinary bladder; Pf increased fivefold after forskolin stimulation to 0.04 cm/s at 23 degrees C. These results establish and validate the application of interferometry to quantify cell volume and osmotic water permeability in cell layers.  相似文献   

14.
Bioreactors are widely used in tissue engineering as a way to distribute nutrients within porous materials and provide physical stimulus required by many tissues. However, the fluid dynamics within the large porous structure are not well understood. In this study, we explored the effect of reactor geometry by using rectangular and circular reactors with three different inlet and outlet patterns. Geometries were simulated with and without the porous structure using the computational fluid dynamics software Comsol Multiphysics 3.4 and/or ANSYS CFX 11 respectively. Residence time distribution analysis using a step change of a tracer within the reactor revealed non-ideal fluid distribution characteristics within the reactors. The Brinkman equation was used to model the permeability characteristics with in the chitosan porous structure. Pore size was varied from 10 to 200 microm and the number of pores per unit area was varied from 15 to 1,500 pores/mm(2). Effect of cellular growth and tissue remodeling on flow distribution was also assessed by changing the pore size (85-10 microm) while keeping the number of pores per unit area constant. These results showed significant increase in pressure with reduction in pore size, which could limit the fluid flow and nutrient transport. However, measured pressure drop was marginally higher than the simulation results. Maximum shear stress was similar in both reactors and ranged approximately 0.2-0.3 dynes/cm(2). The simulations were validated experimentally using both a rectangular and circular bioreactor, constructed in-house. Porous structures for the experiments were formed using 0.5% chitosan solution freeze-dried at -80 degrees C, and the pressure drop across the reactor was monitored.  相似文献   

15.
This paper presents a mathematical model to describe the growth of tissue into a rapid-prototyped porous scaffold when it is implanted onto the chorioallantoic membrane (CAM). The scaffold was designed to study the effects of the size and shape of pores on tissue growth into conventional tissue engineering scaffolds, and consists of an array of pores each having a pre-specified shape. The experimental observations revealed that the CAM grows through each pore as an intact layer of tissue, provided the width of the pore exceeds a threshold value. Based on these results a mathematical model is described to simulate the growth of the membrane, assuming that the growth is a function of the local isotropic membrane tension. The model predictions are compared against measurements of the extent of membrane growth through the pores as a function of time for pores with different dimensions.  相似文献   

16.
In this study we examine the release profile of bovine serum albumin (BSA) from a porous polymer matrix derived from a co-continuous polymer blend. The porosity is generated through the selective extraction of one of the continuous phases. This is the first study to examine the approach of using morphologically tailored co-continuous polymer blends as a template for generating porous polymer materials for use in controlled release. A method for the preparation of polymeric capsules is introduced, and the effect of matrix pore size and surface area on the BSA release profile is investigated. Furthermore, the effect of surface charge on release is examined by surface modification of the porous substrate using layer-by-layer deposition techniques. Synthetic, nonerodible polymer, high-density polyethylene (HDPE), was used as a model substrate prepared by melt blending with two different styrene-ethylene-butylene copolymers. Blends with HDPE allow for the preparation of porous substrates with small pore sizes (300 and 600 nm). A blend of polylactide (PLA) and polystyrene was also used to prepare porous PLA with a larger pore size (1.5 microm). The extents of interconnectivity, surface area, and pore dimension of the prepared porous substrates were examined via gravimetric solvent extraction, BET nitrogen adsorption, mercury porosimetry, and image analysis of scanning electron microscopy micrographs. With a loading protocol into the porous HDPE and PLA involving the alternate application of pressure and vacuum, it is shown that virtually the entire porous network was accessible to BSA loading, and loading efficiencies of between 80% and 96% were obtained depending on the pore size of the carrier and the applied pressure. The release profile of BSA from the microporous structure was monitored by UV spectrophotometry. The influence of pore size, surface area, surface charge, and number of deposited layers is demonstrated. It is shown that an effective closed-cell structure in porous PLA can be prepared, effectively eliminating all short-term BSA release.  相似文献   

17.
Graphene oxide (GO)-based materials have shown promise as water-permeating membranes in pervaporation separation. However, the feed permeation and surface affinity of single-layer nanoporous GO sheet for liquid mixtures remain unresolved. Here, the pressure-driven molecular transport of pure ethanol and pure water, as well ethanol-water mixtures, crossing through single-layer nanoporous GO sheet was studied by non-equilibrium molecular dynamics simulations. We show that single-layer GO sheet with controlled pore sizes can effectively reject ethanol and allow water permeation with high permeability. This means that porous GO sheets could act as an effective dehydration membrane, therefore providing the initial barrier for ethanol passage in GO-based membrane. The pore size effect was considered as the separation mechanism. Both ethanol and water molecules in the mixture show comparable affinity with GO surfaces. The hydrogen-bonding coupling interaction between mixture and surface functional groups provide addition influence on the molecular transport through GO pores.  相似文献   

18.
Powder-based inkjet 3D printing method is one of the most attractive solid free form techniques. It involves a sequential layering process through which 3D porous scaffolds can be directly produced from computer-generated models. 3D printed products'' quality are controlled by the optimal build parameters. In this study, Calcium Sulfate based powders were used for porous scaffolds fabrication. The printed scaffolds of 0.8 mm pore size, with different layer thickness and printing orientation, were subjected to the depowdering step. The effects of four layer thicknesses and printing orientations, (parallel to X, Y and Z), on the physical and mechanical properties of printed scaffolds were investigated. It was observed that the compressive strength, toughness and Young''s modulus of samples with 0.1125 and 0.125 mm layer thickness were more than others. Furthermore, the results of SEM and μCT analyses showed that samples with 0.1125 mm layer thickness printed in X direction have more dimensional accuracy and significantly close to CAD software based designs with predefined pore size, porosity and pore interconnectivity.  相似文献   

19.
The total osmotic flow of water across cell membranes generally exceeds diffusional flow measured with labeled water. The ratio of osmotic to diffusional flow has been widely used as a basis for the calculation of the radius of pores in the membrane, assuming Poiseuille flow of water through the pores. An important assumption underlying this calculation is that both osmotic and diffusional flow are rate-limited by the same barrier in the membrane. Studies employing a complex synthetic membrane show, however, that osmotic flow can be limited by one barrier (thin, dense barrier), and the rate of diffusion of isotopic water by a second (thick, porous) barrier in series with the first. Calculation of a pore radius is meaningless under these conditions, greatly overestimating the size of the pores determining osmotic flow. On the basis of these results, the estimation of pore radius in biological membranes is reassessed. It is proposed that vasopressin acts by greatly increasing the rate of diffusion of water across an outer barrier of the membrane, with little or no accompanying increase in pore size.  相似文献   

20.
Natural biodegradable polymers were processed by different techniques for the production of porous structures for tissue engineering scaffolds. Potato, corn, and sweet potato starches and chitosan, as well as blends of these, were characterized and used in the experiments. The techniques used to produce the porous structures included a novel solvent-exchange phase separation technique and the well-established thermally induced phase separation method. Characterization of the open pore structures was performed by measuring pore size distribution, density, and porosity of the samples. A wide range of pore structures ranging from 1 to 400 microm were obtained. The mechanisms of pore formation are discussed for starch and chitosan scaffolds. Pore morphology in starch scaffolds seemed to be determined by the initial freezing temperature/freezing rate, whereas in chitosan scaffolds the shape and size of pores may have been determined by the processing route used. The mechanical properties of the scaffolds were assessed by indentation tests, showing that the indentation collapse strength depends on the pore geometry and the material type. Bioactivity and degradation of the potential scaffolds were assessed by immersion in simulated body fluid.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号